
(* List of fast Gourdon alpha factors (alpha = alpha_y * alpha_z) found by

running pi(x) benchmarks using the find_optimal_alpha_gourdon.sh script *)

In[1]:= alphaGourdon = {{10^11, 5.236}, {10^12, 6.571}, {10^13, 8.534}, {10^14, 11.096},

{10^15, 14.031}, {10^16, 18.159}, {10^17, 23.143}, {10^18, 28.479},

{10^19, 35.073}, {10^20, 43.327}, {10^21, 54.440}, {10^22, 68.642},

{10^23, 86.600}, {10^24, 107.593}, {10^25, 133.439}, {10^26, 164.157}}

Out[1]= {{100000000000, 5.236}, {1000000000000, 6.571},

{10000000000000, 8.534}, {100000000000000, 11.096},

{1000000000000000, 14.031}, {10000000000000000, 18.159},

{100000000000000000, 23.143}, {1000000000000000000, 28.479},

{10000000000000000000, 35.073}, {100000000000000000000, 43.327},

{1000000000000000000000, 54.44}, {10000000000000000000000, 68.642},

{100000000000000000000000, 86.6}, {1000000000000000000000000, 107.593},

{10000000000000000000000000, 133.439}, {100000000000000000000000000, 164.157}}

In[2]:= ListLogLinearPlot[alphaGourdon, Filling → Bottom, Joined → True]

Out[2]= 

10
12

10
15

10
18

10
21

10
24

50

100

150

(* alpha is a tuning factor that balances the compuation of the

easy special leaves (A + C formulas) and the hard special leaves

(D formula). The formula below is used in the file src/util.cpp

to calculate a fast alpha factor for the computation of pi(x). *)

In[3]:= NonlinearModelFit[alphaGourdon, a (Log[x])^3 + b (Log[x])^2 + c Log[x] + d, {a, b, c, d}, x]

Out[3]= FittedModel -183.836 + 16.5791 Log[x] - 0.4955451
2 + 0.00526934 Log[x]3 


