
Qu-Prolog 10.7 User Guide

Peter J. Robinson

May 28, 2022

Abstract

Qu-Prolog is an extension of Prolog with built-in support for computation
on symbolic data which involves quantifiers, object variables and substitu-
tions. This user guide introduces many Qu-Prolog features via a collection of
examples. Unification is informally presented through a series of unification
problems given to the Qu-Prolog interpreter. A lambda calculus example
and a simple Natural Deduction style theorem prover are discussed. Exam-
ples of using multiple threads, high-level communication and GUIs are also
presented. Familiarity with elementary Prolog is assumed.

1 Introduction

Qu-Prolog is an extension of the well-known Prolog logic programming lan-
guage. Prolog was defined originally for symbolic computation applications
and this has remained one of its strengths. Prolog supports symbolic compu-
tation on only a very limited vocabulary however. In particular the symbolic
data type on which Prolog is based has no recognition of syntactic objects
such as quantifiers, object variables or substitutions. Qu-Prolog extends Pro-
log primarily by providing built-in support for computation on symbolic data
which may include quantifiers, object variables and substitutions. Qu-Prolog
was designed originally as an implementation and tactic language for inter-
active theorem provers, particularly those that carry out schematic proofs.
In particular Qu-Prolog is the implementation language of the Ergo theorem
prover [1, 2]. It is now also used more generally in the prototyping of program
development environments, and is capable of a wide range of applications.

Here are some examples of Qu-Prolog terms. These examples show how easily
mathematical and logical notations can be represented.

• Here is a term that can represent the rule for beta reduction in the
lambda calculus (described further in Section 3). This example uses
an atom lambda assumed to have been declared a quantifier symbol,
an object variable x, and Qu-Prolog’s built-in substitution operator
[-/-].

(lambda x A)(B) => [B/x]A

Atoms are declared as quantifier symbols in the same way as Prolog
declares infix, prefix and postfix operators (that is, using op/3 - see
Section 3 for an example).

• The following two clauses can represent simplifications for definite in-
tegrals in real number calculus. Here we use the !! notation, which
introduces a quantifier symbol that is not an atom (or has not been
explicitly declared to be a quantifier).

simplify(!!integral(A,B) x (F+G),

1

!!integral(A,B) x F + !!integral(A,B) x G).

simplify(!!integral(A,B) x C, C*B - C*A) :- x not_free_in C.

The two-place predicate not free in is predefined in Qu-Prolog.

• A term that can represent the rule for existential introduction in pred-
icate calculus reasoning (if P is true for some value of x then ∃xP is
true).

[T/x]P --> ex x P

Readers should refer to the Qu-Prolog reference manual [3] for a detailed
description of the syntax of Qu-Prolog and of Qu-Prolog library support.

Note that Qu-Prolog has no built-in semantics for any quantifier, except that
every quantifier binds variables. The required semantics is programmed for
each application, using clauses such as those illustrated above.

The Qu-Prolog language has notations which makes reference to all the terms
of the object language, and in particular includes Qu-Prolog variables that
range over the variables in the object language. A Qu-Prolog variable that
ranges over object language variables is strictly called an object-var vari-
able in Qu-Prolog. However, in practice it is often loosely referred to as an
object variable, since practical programming uses the Qu-Prolog language
exclusively and so never needs to use the object language directly.

The Qu-Prolog language also includes a substitution operator, as seen in the
examples given above.

The remainder of this guide presents Qu-Prolog-specific features through a
collection of examples. The source code of the example programs given in the
following sections can be found in the examples directory of the Qu-Prolog
release. It is assumed the reader is familiar with Prolog notation and Prolog
programming. Readers who are new to Prolog are referred to [4, 5].

Qu-Prolog is generally consistent with SICStus Prolog [6]. Most SICStus
programs run under Qu-Prolog.

2

2 Unification

Prolog unification attempts to find instantiations of variables that make two
terms syntactically identical. This is fine for quantifier-free languages (like
Prolog) but for languages like Qu-Prolog that include quantifier notations
syntactic identity is too strong a requirement. That is because the names of
bound object variables are insignificant to the meaning: quantifiers and other
notations which differ only in the names of bound variables are regarded as
equal (they are called α-equivalent).

For Qu-Prolog, unification is an attempt to find instantiations of variables
that make terms α-equivalent. The reader is referred to [7] for a formal
discussion of unification in Qu-Prolog.

BEWARE: Prolog books often use the word ‘substitution’ to refer to what
we call instantiation. Since Qu-Prolog includes a substitution operator, we
need to distinguish the two concepts carefully. Intuitively, instantiations
‘move through’ all terms whereas substitutions cannot affect bound vari-
ables. Strictly, instantiations operate on meta-level terms. An instantiation
replaces a Qu-Prolog variable (which is a meta-level variable) by a Qu-Prolog
term. The Qu-Prolog substitution operator on the other hand describes an
operation on object-level terms: [B/x]A describes the replacement of free
occurrences of an object-level variable x in an object-level term A by copies
of the object-level term B, with changes to the names of bound variables in
A as needed to give the intended semantics (that is, to assign a value to free
occurrences of the object variable denoted by x).

We now present examples that show key features of Qu-Prolog unification.
Each example is from a session with the Qu-Prolog interpreter and is ac-
companied by a short explanation of the behaviour. We assume q has been
declared as a quantifier and that x, y, z, w have been declared as object
variable prefixes.

Example 1

| ?- q y f(y) = q x f(x).

y = y

x = x

3

The Qu-Prolog interpreter responds to each successful query by displaying
the instantiations of all variables appearing in the query. In this example x

and y are object variables and the unification succeeds without instantiating
x or y. This is because the query asserts the α-equivalence of two terms q y

f(y) and q x f(x), and those two terms are already α-equivalent.

Example 2

| ?- q y A = q x f(x).

y = y

A = f(y)

x = x

Here Qu-Prolog finds the most general instantiation of A that makes the
terms α-equivalent.

Example 3

| ?- q y A = q x C.

y = y

A = [y/x]C

x = x

C = C

provided:

y not_free_in [$/x]C

In this example we want to find most general instantiations of A and C which
make q y A and q x C α-equivalent. Thus A and C will be the same except
that in A all free occurrences of x in C will be replaced by y. Note that the
answer to this unification includes the constraint y not free in [$/x]C.
Here ‘$’ is a system supplied constant.

To explain Qu-Prolog’s response to this query we consider separately the
cases when x and y refer to different object-level variables, and when they

4

refer to the same object-level variable. This is for the purpose of explanation
only however: Qu-Prolog has not made either choice. Assuming x and y

refer to different object-level variables, then the two terms cannot be unified
if C contains a free occurrence of y because then q y A has no free occur-
rence of y whereas q x C does. On the other hand, if x and y refer to the
same object-level variable then no such restriction applies. The constraint
y not free in [$/x]C covers both cases. In the first case the constraint
reduces to y not free in C, and in the second case it reduces to true.

This example shows that unification can produce constraints on the vari-
ables. Such constraints are stored as delayed problems that are woken when
appropriate variables are instantiated. An alternative to delaying would be
to explore, during unification, the various possibilities for instantiating vari-
ables. This is not done in Qu-Prolog however, since the resulting program-
ming paradigm is harder to control. Exploring possibilities for instantiating
variables can however be programmed when desired.

Example 4

| ?- q [x,y] A = q [z,w] B.

x = x

y = y

A = [x/z, y/w]B

z = z

w = w

B = B

provided:

y not_free_in [$/z, $/w]B

x not_free_in [$/z, $/w]B

z not_free_in [w]

w not_free_in [z]

y not_free_in [x]

x not_free_in [y]

This example extends the previous one to include quantifier notations and

5

substitution operator usages which bind multiple variables in parallel. A list
of variables bound in parallel by a quantifier may be called a binding list.
Qu-Prolog constrains all variables appearing in a binding list to be mutually
distinct, that is they refer to different object-level variables. Constraints
requiring object variables to be distinct are displayed in the answer in the
form x not free in [x1, . . .,xn] where x is distinct from each of x1, . . . , xn.
The symmetry of the distinctness relation is reflected in answers by some
redundancy in the not free in constraints.

Example 5

| ?- [A/x]B = 3.

A = A

x = x

B = B

provided:

[A/x]B = 3

This example shows the Qu-Prolog approach to dealing with unifications that
are ‘too difficult’, in the sense that there is not a unique explicit most general
solution. Here there are two solutions to the problem. One is to instantiate
B to 3 and the other is to instantiate B to x and A to 3. Such problems are
delayed until more information is known about the problem. In this simple
example no further information becomes available and Qu-Prolog makes only
a trivial response to the query. However in a wider context in which A or B

are later instantiated in other computation, this subproblem would then be
resumed and solved as far as possible.

Example 6

| ?- x not_free_in y, [x/z]y = x.

x = x

y = y

6

z = z

provided:

x = [x/z]y

y not_free_in [x]

x not_free_in [y]

This is a trivial example from another class of problems that are ‘too dif-
ficult’. Problems in this class have exactly one solution but, in general, to
determine this fact requires more computation than has been built into Qu-
Prolog’s unification algorithm (such omissions are not necessarily oversights
- there can be significant performance advantages in delaying the solution
of subproblems until they are easy to solve). Again, such problems are de-
layed until more information is known about the variables involved. In this
example the required unifier is y = z.

Example 7

| ?- [A/x]B = 3, A = 2.

A = 2

x = x

B = 3

Example 8

| ?- [A/x]B = 3, x not_free_in B.

A = A

x = x

B = 3

In each of Examples 7 and 8, the query of Example 5 is augmented by more
information about the variables in the problem, and the delayed problem is
now solved uniquely.

7

Qu-Prolog’s examples directory includes in incomplete unify.ql an exam-
ple of a user defined predicate called incomplete unify which attempts to
find solutions to delayed unification problems by applying a collection of
heuristics. This predicate will be discussed briefly in a later section.

Example 9

| ?- X = f(X).

no

Qu-Prolog applies ‘occurs checks’ to all unifications (in principle; in practice
the actual calculations are omitted when the outcome can be predicted).
This is important for a language that is used to implement schematic theorem
provers. Doing occurs checks adds an overhead to unification and to minimise
this overhead Qu-Prolog tries to avoid unnecessary occurs checks.

We now present more unification problems without commentary.

Example 10

| ?- F(X) = g(a).

F = g

X = a

Example 11

| ?- !!Q X B = q [x,y] f(x,y).

Q = q

X = [x0, x1]

B = f(x0, x1)

x = x

y = y

provided:

8

y not_free_in [x]

x not_free_in [y]

x1 not_free_in [x0]

x0 not_free_in [x1]

Example 12

| ?- q x:int f(x) = q y:T A.

x = x

y = y

T = int

A = f(y)

Example 13

| ?- q x:y f(x) = q y:T A.

x = x

y = y

T = y

A = f(y)

Note that the term after the ‘:’ in the binder is outside the scope of the
quantifier. This syntax is provided to support the use of typed binding
notations.

3 The Lambda Calculus

The first example program we consider is a simple recognizer and evaluator
for terms of the lambda calculus. First we briefly review the nature of the
lambda calculus for those not already familiar with it.

The lambda calculus is a simple formal language which contains only some
basic notation, called lambda terms, for describing functions, and some basic

9

rules for transforming (“reducing”) function notations. Use of these rules
typically simplifies lambda terms so as to make clearer which values they
denote. Because the (untyped) lambda calculus described here is so simple
and general, some of its terms represent rather unusual functions. However
that need not be a distraction.

In brief, terms of this lambda calculus are constructed recursively from vari-
ables and a lambda quantifier λ as follows.

• Each variable is a lambda term.

• If A and B are lambda terms, then so is A(B), which intuitively rep-
resents the application of a function A to an argument B.

• If A is a lambda term and x is a variable, then λxA is a lambda term,
which intuitively represents the function whose value at x is A.

A term of the form λxA is referred to as a lambda abstraction.

It is seen below that Qu-Prolog can directly execute this recursive definition
so as to implement a lambda term recognizer.

The evaluator presented below is an implementation of a top-down, left-first
evaluator (a “lazy” evaluator). The first part gives rules for reduction as a
finite sequence of single reduction steps (“ contractions”). The second part
gives the usual contraction rules for the lambda calculus.

Here is the Qu-Prolog code (in file lambda.ql) for this example.

%

% Quantifier and operator declarations.

%

?- op(500, quant, lambda). % declare lambda as a quantifier

?- op(800, xfx, =>). % single reduction

?- op(800, xfx, =>*). % zero or more reductions

% a recogniser for lambda terms

10

lambda_term(x). % object variables are lambda terms

lambda_term(A(B)) :-

lambda_term(A),

lambda_term(B).

lambda_term(lambda x A) :-

lambda_term(A).

% lambda evaluation

A =>* C :-

A => B,

B =>* C, !.

A =>* A.

(lambda x A)(B) => [B/x]A. % beta rule

A(B) => C(B) :- A => C. % evaluation within

% a subterm

A(B) => A(C) :- B => C.

lambda x A => lambda x B :- A => B.

lambda x A(x) => A :- x not_free_in A. % eta rule (optional)

This file can be compiled to object code by executing

qc -c lambda.ql

Below is a session with the Qu-Prolog interpreter showing the result of sample
queries to the (compiled) lambda evaluator.

First, we start the interpreter and load the compiled code.

$ qp

Qu-Prolog Version 6.0

11

| ?- load(lambda).

yes

Instead of loading the compiled code the source file could have been consulted
using [lambda] or consult(lambda).

Next, some simple lambda reductions. The first does a single application of
the beta rule. This example illustrates that when Qu-Prolog encounters a
substitution operator in a term, in this case [x1/x]x, it automatically seeks
to evaluate it - in this case to x1.

| ?- (lambda x x)(x1) =>* R.

x = x

x1 = x1

R = x1

The next example also makes a simple application of the beta rule. However
this example illustrates that two object variables x2 and x are not auto-
matically assumed to have values which are distinct object-level variables.
Recall that x2 and x are actually meta-variables which range over object-
level variables. Intuitively they may take values which are either distinct
object-level variables or the same object-level variable. Hence the following
example does not fully evaluate the substitution in the term [x1/x](x2(x))

which is generated by the beta rule.

| ?- (lambda x x2(x))(x1) =>* R.

x = x

x2 = x2

x1 = x1

R = ([x1/x]x2)(x1)

The next example is similar to the previous example except that the ob-
ject variables x2 and x are constrained to have distinct values by the x

12

not free in x2 assertion. The added constraint causes full evaluation of
the substitution.

| ?- x not_free_in x2, (lambda x x2(x))(x1) =>* R.

x = x

x2 = x2

x1 = x1

R = x2(x1)

provided:

x2 not_free_in [x]

x not_free_in [x2]

Next we see an example of what can happen when a term containing schematic
variables is matched against patterns in rewrite rules.

| ?- (lambda x A)(B) =>* R.

This query goes into infinite recursion with the variables A and B instantiated
by patterns in the rules. For such applications one-sided unification is often
required. Qu-Prolog can restrict the form of unification used by ‘freezing’
all variables in selected terms, thus preventing them from being instantiated.
The next example illustrates this. It is an alternative form of the previous
example, in which all variables in the term to be reduced are frozen.

| ?- Term = (lambda x A)(B), freeze_term(Term), Term =>* R.

Term = (lambda x A)(B)

x = x

A = A

B = B

R = [B/x]A

13

Since all the variables in Term are frozen, they cannot be instantiated when
applying the one-step reduction rules.

As we have seen, the program for reducing lambda terms given above is
essentially the same as its specification. It is perhaps not surprising therefore
that this program is somewhat inefficient. After finding some subterm to
reduce, it starts the reduction process again from the top-level term.

The alternative program below is more efficient but more complicated. It
implements a form of ‘eager’ evaluation. The program reduces terms bottom-
up and, wherever possible, avoids re-reducing terms it has already processed.
It also avoids building copies of structures when none of its substructures
can be reduced. The IsReduced variable serves as a flag to determine if any
reduction has taken place. It is instantiated to true if a reduction occurs
and otherwise remains uninstantiated. As a further optimization the program
applies only a single-step beta reduction to a term (λxA)(B) after evaluation
of λxA and B, unless B is also a lambda abstraction.

A =>* Result :-

reduce(A, B, IsReduced),

(IsReduced == true

->

simplify_term(B, Result)

;

Result = B

).

reduce(A(B), Result, IsReduced) :-

reduce(A, C, IsReduced),

reduce(B, D, BIsReduced),

IsReduced = BIsReduced, % either is reduced

reduce_application(C, D, Result, IsReduced),

!.

reduce(lambda x A, Result, IsReduced) :-

reduce(A, B, IsReduced),

IsReduced == true,

!,

Result = lambda x B.

reduce(X, X, _).

14

reduce_application(lambda x F, A, Result, true) :-

!,% beta reduction

(quant(A) % A is a lambda abstraction

->

reduce([A/x]F, Result, _)

;

Result = [A/x]F

).

reduce_application(F, A, Result, IsReduced) :-

IsReduced == true,

Result = F(A).

To finish this section we present a type check/inference program for lambda
terms. The lambda terms considered here also include atoms (that is, the
above recursive definition of lambda terms is extended by adding the clause:
each atom is a lambda term). Prolog variables are used to represent poly-
morphic types.

For the untyped lambda calculus, the program given below can be thought
of as an implementation of goal directed proof in a type-assignment system
[8], where the first two clauses correspond to ‘arrow elimination’ and ‘arrow
introduction’ rules respectively.

For the typed lambda calculus, the program can be used, for example, as an
implementation of type inference in an implementation of Huet’s unification
algorithm for typed lambda terms [9].

?- op(800, xfx, ~>). % for function types

% type checker/evaluator

% TypeAssign is an open list used to associate basic terms -

% vars, obvars and atoms with their type.

% Note that the type of each bound variable is added to the front of

% the TypeAssign list to provide a local context for typing the body

% of each quantified term.

type(A(B), Y, TypeAssign) :-

15

!,

type(A, X ~> Y, TypeAssign),

type(B, X, TypeAssign).

type(lambda x A, T ~> TA, TypeAssign) :-

!,

type(A, TA, [x^T|TypeAssign]).

type(X, TX, TypeAssign) :-% basic term

in_type(X^TX, TypeAssign).

% in_type(X^Tx, TypeAssign) is true iff Tx is the type

% assigned to X in TypeAssign.

in_type(X^Tx, TypeAssign) :- % not there

var(TypeAssign),

!,

TypeAssign = [X^Tx|_]. % instantiate open list

in_type(X^Tx, [Y^Ty|_]) :- % found

X == Y,

!,

Tx = Ty.

in_type(X^Tx, [_|TypeAssign]) :-

in_type(X^Tx, TypeAssign).

Here is an example query to the typing program.

| ?- type((lambda x a(x))(b(x1)),T,L).

x = x

x1 = x1

T = T

L = [a ^ (A ~> T), b ^ (B ~> A), x1 ^ B|C]

Note that x1 is given a type in L, because x1 is free, whereas the bound
variable x is not given a type.

16

4 A simple theorem prover

In this section we present a simple Natural Deduction style interactive the-
orem prover capable of carrying out schematic proofs in classical predicate
calculus. This example is influenced by a similar example presented by Felty
[10]. The complete program is given in the examples directory.

In this prover --> represents ‘turnstile’. The hypotheses on the left hand
side of --> are represented by a Prolog list, and the current subproblems are
represented by a Prolog list.

Here is the database of rules used in the prover.

/*

* Database of ND rules

*

* E.G. [Gamma --> A, Gammma --> B]

* (and_i) -----------------------------

* Gamma --> A and B

*/

rule(discharge(N), Gamma --> A, [[] --> true]) :-

nth_item(N, A, Gamma).

rule(and_i, Gamma --> A and B, [(Gamma --> A), (Gamma --> B)]).

rule(or_i1, Gamma --> A or B, [Gamma --> A]).

rule(or_i2, Gamma --> A or B, [Gamma --> B]).

rule(imp_i, Gamma --> A => B, [[A|Gamma] --> B]).

rule(neg_i, Gamma --> ~A , [[A|Gamma] --> false]).

rule(all_i, Gamma --> all x A, [Gamma --> A]) :-

x not_free_in Gamma.

rule(ex_i, Gamma --> ex x A, [Gamma --> [T/x]A]).

rule(false_i, Gamma --> A, [Gamma --> false]).

rule(and_e(N), Gamma --> C, [[A,B|NewGamma] --> C]) :-

nth_and_rest(N, A and B, Gamma, NewGamma).

rule(imp_e(N), Gamma --> C, [NewGamma --> A,

([B|NewGamma] --> C)]) :-

nth_and_rest(N, A => B, Gamma, NewGamma).

17

rule(or_e(N), Gamma --> C, [[A|NewGamma] --> C,

([B|NewGamma] --> C)]) :-

nth_and_rest(N, A or B, Gamma, NewGamma).

rule(neg_e(N), Gamma --> C, [(NewGamma --> A),

([false|NewGamma] --> C)]) :-

nth_and_rest(N, ~A, Gamma, NewGamma).

rule(all_e(N), Gamma --> C, [[[T/x]A | Gamma] --> C]) :-

nth_item(N, all x A, Gamma).

rule(ex_e(N), Gamma --> C, [[A|NewGamma] --> C]) :-

nth_and_rest(N, ex x A, Gamma, NewGamma),

x not_free_in NewGamma,

x not_free_in C.

rule(modus_ponens, Gamma --> C,

[(Gamma --> Lemma), ([Lemma|Gamma] --> C)]).

The predicate nth and rest/4 is used to extract both the n’th element of a
list and the list without this element. Note that the use of this predicate and
the not_free_in/2 predicate provide a way of constraining the application
of rules.

The kernel of the prover uses Qu-Prolog’s implicit parameters to store the
state of the proof. Implicit parameters provide a form of backtrackable de-
structive assignment with logical semantics and are accessed via the predi-
cates ip_set/2,3 and ip_lookup/2,3. Access to the proof state is intended
to be through the predicates of the kernel.

Here is the definition of the kernel.

/* Create a new proof state */

new_proof(Name, T) :-

ip_set(statement, theorem(Name, T)),

ip_set(proof_state, [([] --> T)]).

/* End a proof */

end_proof :-

ip_lookup(proof_state, []),

ip_lookup(statement, theorem(Name, T)),

save_theorem(Name, T).

18

/* End a proof branch */

end_branch :-

ip_lookup(proof_state, [([] --> true)|R]),

ip_set(proof_state, R).

/* Apply inference rule to 1st problem of the proof state */

trans(Rule) :-

ip_lookup(proof_state, [HeadProblem|OtherProblems]),

rule(Rule, HeadProblem, NewHead),

incomplete_retry_delays,

append(NewHead, OtherProblems, Problems),

ip_set(proof_state, Problems).

/* Look up the 1st problem of the proof state */

head_problem(P) :-

ip_lookup(proof_state, [P|_]).

/* Look up all the problems of the proof state */

all_problems(P) :-

ip_lookup(proof_state, P).

/* Extract the name and statement of the theorem */

statement(T) :-

ip_lookup(statement,T).

/* Save the theorem in the database */

save_theorem(Name, Theorem) :-

collect_vars(Theorem, Vars),

retry_delays,

collect_constraints(Vars, Distinct, NFI, Others),

list_to_conj(Distinct, true, C1),

list_to_conj(NFI, C1, C2),

list_to_conj(Others, C2, Conjunction),

assert((theorem(Name, Theorem) :- Conjunction)).

Note that in the application of each rule a call to incomplete retry delays

is made. In some cases, the application of a rule may cause a delayed uni-

19

fication problem to be introduced. We have taken the view for this prover
that such problems should be solved immediately, if possible. The call to
incomplete retry delays uses heuristics in order to solve such unification
problems. The code for this is given in the examples directory of the Qu-
Prolog release.

Now that the rules and kernel are defined, users are able to write tactics and
user interfaces that use the ‘methods’ of the kernel.

The following simple interface is supplied with the code in the examples
directory. The predicate display_head_problem displays the first unproved
problem (if there is one) with the hypotheses above the line and the goal
below the line, and no branches left if there are no unproven problems.

get_command(C) :-

auto,

nl,

display_head_problem,

nl, nl,

write(’:: ’),

readR(C).

prove(Name, T) :-

new_proof(Name, T),

freeze_vars(T),

get_command(C),

proof_interpreter(C).

proof_interpreter(quit).

proof_interpreter(end_proof) :-

end_proof, !.

proof_interpreter(show_constraints) :-

!,

show_constraints,

get_command(NewC),

proof_interpreter(NewC).

proof_interpreter(undo) :-

!, fail.

proof_interpreter(hint) :-

20

!,

hint,

get_command(NewC),

proof_interpreter(NewC).

proof_interpreter(C) :-

call(C),

get_command(NewC),

proof_interpreter(NewC).

proof_interpreter(C) :-

writeR(C),

write(’ failed’),

nl,

fail.

proof_interpreter(_) :-

get_command(NewC),

proof_interpreter(NewC).

The prove/2 predicate starts a proof by using new proof/2 of the kernel,
freezes variables of the statement and starts the proof interpreter. It is
typically the case that, when a user is proving a schematic theorem, the
intention is not to instantiate schematic variables of the statement. The call
to freeze vars/1 prevents variables from the statement of the theorem from
being instantiated during the proof.

The calls to readR and writeR are used to maintain a connection between
the schematic variables of the proof and the variables appearing in the in-
put/output by associating variable names with variables. This mechanism
provides users with the ability to interact with schematic variables appearing
in the proof.

Note that a call is made to auto in get command. This is a simple tactic for
applying rules. Here is its definition.

auto :-

heuristic_table(Code, Message),

call(Code),

!,

write(auto:Message),

21

nl,

auto.

auto.

heuristic_table(end_branch, end_branch).

heuristic_table(trans(discharge(N)), discharge(N)).

heuristic_table(trans(all_i), all_i).

heuristic_table(trans(and_i), and_i).

heuristic_table(trans(imp_i), imp_i).

heuristic_table(trans(neg_i), neg_i).

heuristic_table(trans(imp_e(N)), imp_e(N)).

heuristic_table(trans(or_e(N)), or_e(N)).

heuristic_table(trans(and_e(N)), and_e(N)).

heuristic_table(trans(ex_e(N)), ex_e(N)).

To finish this section we present two proof attempts, each in two different
styles.

| ?- prove(th1, all x1 ex x2 A => ex x2 all x1 A).

auto : imp_i

1: all x1 (ex x2 A)

ex x2 (all x1 A)

:: ex_i.

auto : all_i

1: all x1 (ex x2 A)

[B/x2, x0/x1]A

:: all_e(_).

auto : ex_e(1)

auto : discharge(1)

auto : end_branch

22

no branches left

:: end_proof.

x1 = x1

x2 = x2

A = A

provided:

x2 not_free_in A

x2 not_free_in [x1]

x1 not_free_in [x2]

In order for this to be a theorem, incomplete retry delays has added con-
straints that state that x1 and x2 should be different and that x2 should not
occur free in A. A more sophisticated prover could be written that detected
if any constraints involving variables of the statement of the theorem have
been added by incomplete retry delays and in this case cause failure of
that attempted unification. If this test is added the above proof would not
succeed.

prove(th2, ex x2 all x1 A => all x1 ex x2 A).

auto : imp_i

auto : all_i

auto : ex_e(1)

1: [x0/x2](all x1 A)

[x3/x1](ex x2 A)

:: all_e(_).

1: [x0/x2, B/x1]A

2: [x0/x2](all x1 A)

23

[x3/x1](ex x2 A)

:: ex_i.

auto : discharge(1)

auto : end_branch

no branches left

:: end_proof.

x2 = x2

x1 = x1

A = A

This proof, on the other hand, succeeds without constraining variables of the
statement.

We now present attempts at proofs of the above theorems but using a different
notation.

prove(th3, all x1 ex x2 P(x1,x2) => ex x2 all x1 P(x1, x2)).

auto : imp_i

1: all x1 (ex x2 P(x1, x2))

ex x2 (all x1 P(x1, x2))

:: x1 not_free_in P, x2 not_free_in P, x1 not_free_in x2.

1: all x1 (ex x2 P(x1, x2))

ex x2 (all x1 P(x1, x2))

:: ex_i.

auto : all_i

1: all x1 (ex x2 P(x1, x2))

24

P(x0, A)

:: all_e(_).

auto : ex_e(1)

1: P(B, x3)

2: all x1 (ex x2 P(x1, x2))

P(x0, A)

:: show_constraints.

x2 not_free_in [x1]

x1 not_free_in [x2]

x0 not_free_in [x3]

x3 not_free_in [x0]

x3 not_free_in B

x0 not_free_in A

x3 not_free_in A

x1 not_free_in P

x2 not_free_in P

x0 not_free_in P

x3 not_free_in P

For the notation used above, it is usual to consider x1 and x2 to be not
free in P and to consider that x1 and x2 represent different variables. Such
constraints are added at the beginning of the proof.

Note that this proof cannot be completed. For example, an application of the
discharge rule would fail because the constraint x3 not free in A prevents
P(B, x3) and P(x0, A) from unifying. The proof therefore correctly fails.

| ?- prove(th4, ex x1 all x2 P(x1, x2) => all x2 ex x1 P(x1, x2)).

auto : imp_i

auto : all_i

auto : ex_e(1)

25

1: [x0/x1](all x2 P(x1, x2))

[x3/x2](ex x1 P(x1, x2))

:: x1 not_free_in P, x2 not_free_in P, x1 not_free_in x2.

1: [x0/x1](all x2 P(x1, x2))

[x3/x2](ex x1 P(x1, x2))

:: ex_i.

1: [x0/x1](all x2 P(x1, x2))

P(A, x3)

:: all_e(_).

auto : discharge(1)

auto : end_branch

no branches left

:: end_proof.

x1 = x1

x2 = x2

P = P

provided:

x1 not_free_in P

x2 not_free_in P

x2 not_free_in [x1]

x1 not_free_in [x2]

This proof succeeds without further constraining variables.

26

5 Multiple Threads and Communication

Qu-Prolog 10.7 has built-in support for multiple threads of Prolog compu-
tation. Thread execution is controlled by a scheduler that is responsible for
time-slicing, signal handling and managing blocking and unblocking of I/O
and messages. Threads within a single Qu-Prolog process carry out indepen-
dent computations but share the static code area and the dynamic database.

The Qu-Prolog library contains predicates for creating and deleting threads,
for symbolically naming threads, and for controlling thread execution. These
predicates are described in the reference manual.

Qu-Prolog threads, possibly in different processes or even on different ma-
chines, can communicate with each other in two ways. One way is via the use
of sockets and TCP/IP. This is a very low-level form of communication and
is provided as a way of communicating with pre-existing internet services,
such as HTTP and FTP servers. Details of this form of communication is
given in the reference manual.

The other form of communication uses Pedro. Pedro is a subscription/notification
server that also supports peer-to-peer communication.

In order for a client to communicate using Pedro, it must first connect. Af-
ter that the client can subscribe to notifications of a certain form or send
notifications. For details of this the reader is referred to the Qu-Prolog and
Pedro reference manuals.

For peer-to-peer messages the client must first register a name for itself. The
name must be unique for that machine. Once it has registered a name it can
send peer-to-peer messages to other agents.

When a Qu-Prolog process is invoked with a -A process-name switch, the
process first connects to Pedro and then registers this name. After that the
process is able to use the peer-to-peer message send and receive predicates to
communicate with other registered processes. Upon termination the process
deregisters itself and disconnects.

Each peer-to-peer message has three components: the actual message; the
address of the thread the message is intended for; and the sender address.
In Qu-Prolog, the sender address is managed internally and so the user does
not need to worry about it when sending a message.

27

In Qu-Prolog the addresses are called handles and are terms of the form

ThreadID:ProcessName@MachineAddress

where ThreadID is the name of the thread, ProcessName is the name of the
process (as registered with Pedro) and MachineAddress is either the machine
name or machinne IP address. The thread part of the message can be elided.
This will be treated as meaning thread0 by a Qu-Prolog process. Non Qu-
Prolog clients will typically ignore the thread part of the message unless
sending to a particular Qu-Prolog thread. If the address is for a process on
the same machine then @MachineAddress can be elided and further, if the
address is for the same process, then :ProcessName can be elided.

The special address self refers to the current thread.

The identity of a thread is an atom representing the symbolic name of the
thread. A thread is named at creation time and it can change its name at
any time.

Qu-Prolog 10.7 uses two collections of predicates for Pedro communication.
The first group uses predicates that provide a close approximation to the
message send and receive functions of the Pedro API. The second group
takes a more high level approach and is built on top of the first group.

The first example below gives an example using the first group. The process
below reads incoming messages, displays each message together with the
sender and to addresses on standard output and forwards each message to the
to address. This program is in the file router_monitor.ql in the examples
directory of the release.

main(_) :-

router_monitor.

router_monitor :-

repeat,

ipc_recv(Msg , From),

(Msg == quit

->

true

28

;

Msg = to(RealMsg, To),

From = FThread:FProcess@FMachine,

To = ToThread:ToProcess@ToMachine,

write(’Message: ’), write(Msg),

write_term_list([nl, wa(’From: ’), w(FThread), tab(3),

wa(FProcess), tab(3), wa(FMachine)]),

write_term_list([nl, wa(’To: ’), w(ToThread), tab(3),

wa(ToProcess), tab(3), wa(ToMachine)]),

nl,

ipc_send(from(RealMsg, From), To),

fail

).

If this file is compiled as

qc -o router_monitor router_monitor.ql

and then invoked as

router_monitor -A router_monitor

then it will process the incoming messages as described above.

The call ipc_recv(Msg, From) blocks waiting on a message and when a
message arrives it succeeds with Msg and From instantiated to the message
and the sender handle.

Finally, the call ipc_send(from(RealMsg, From), To) sends the message
on to the to field of the received message and sets the from field to the sender
of the received message.

Another process can send a message to the monitor as follows.

ipc_send(Message, thread0:router_monitor@some_machine,

Some_Handle).

The handle above is composed of the thread ID thread0 (the main thread –
and in this case the only thread), a process name router_monitor, a machine

29

address some_machine. If this is the handle for a running monitor process
then this message will be displayed by the monitor process and forwarded to
Some_Handle.

The remaining examples of this section use multiple threads and the high-
level communication predicates.

The following example uses the high-level communications layer to imple-
ment most of the Linda model [12] for interprocess communication. The
Linda model implementation has two components: the Linda server (in
linda_server.ql in the examples directory); and support for Linda clients
(in linda_client.ql).

The Linda server stores Linda tuples (as Prolog facts) and responds to the
following requests from clients to add, remove and read tuples from the tuple
space.

• out(T) – Add the tuple T to the tuple space.

• in(T) – Block until a matching tuple is added to the tuple space, then
remove the matching tuple and return it to the client.

• rd(T) – The same as in(T) except that the matching tuple is not
removed.

• inp(T) – The same as in(T) except that it returns a failure rather
than blocks if no matching tuple is found.

• rdp(T) – The same as rd(T) except that it returns a failure rather
than blocks if no matching tuple is found.

The Linda server should be started using the switch -A linda_server_process

to name the process.

The main thread of the linda server is initialized with a call to linda/0.
This call names the main thread and starts a repeat-fail loop that waits for
connect messages from clients and forks a thread for each client. Each forked
thread is responsible for processing requests from its client.

linda :-

thread_set_symbol(linda_server_thread),

30

linda_loop.

linda_loop :-

repeat,

connect <<- RtAddr,

thread_fork(_, linda_thread(RtAddr)),

fail.

The goal connect <<- RtAddr is a high-level message receive which blocks
until a connect message is received. Note that the sender address is passed
as an argument to the goal to be executed in the forked thread. This informs
the forked thread of its client address.

The forked thread first sends a message to its client to inform the client of the
address of the forked thread. It then enters a loop to process client requests.

linda_thread(A) :-

connected ->> A,

thread_loop(A).

thread_loop(A) :-

repeat,

message_choice

(

out(T) <<- A ->

assert(T),

inserted ->> A

;

in(T) <<- A ->

thread_wait_on_goal(retract(T)),

ok(T) ->> A

;

rd(T) <<- A ->

thread_wait_on_goal(clause(T, true)),

ok(T) ->> A

;

inp(T) <<- A ->

(retract(T)

31

->

ok(T) ->> A

;

fail ->> A

)

;

rdp(T) <<- A ->

(clause(T, true)

->

ok(T) ->> A

;

fail ->> A

)

;

disconnect <<- A ->

thread_exit

;

notify(T) <<- A ->

thread_fork_anonymous(_, notify_thread(T,A))

),

fail.

notify_thread(T,A) :-

notified >> A,

thread_wait_on_goal(clause(T, true)),

notify_match(T) ->> A.

The connected ->> A call sends the connected message to its client.

Requests are processed using the message_choice/1 predicate. The argu-
ment to message_choice is a term that uses the if-then-else construct of
Prolog where the test is replaced by a message/address pattern - see the
reference manual for a full description.

The call to message_choice/1 above blocks until a message is received that
matches one of the message patterns. When such a message is received, the
message is removed from the message queue and the goal associated with the
first matching message pattern is called.

32

Note that all message patterns in this example have the client address in the
address field and so this thread only responds to messages from its client.

A call to the predicate thread_wait_on_goal/1 blocks until some change has
been made to the dynamic database. When the call unblocks the supplied
goal is called and if the call succeeds then the call to thread_wait_on_goal

succeeds. Otherwise it reblocks.

Although not part of the Linda model, a client can send a notify message
to the Linda server thread. This is included as another example of the use
of threads. This request causes another thread to be forked that waits until
a term matching the supplied pattern has been asserted, at which point the
thread notifies the client. It is the clients responsibility to check for the
notify_match message.

The file linda_client.ql in the examples directory gives predicates that
support interaction with the linda server. A client connects to the server by
using the linda_connect predicate defined below.

linda_connect :-

connect ->> linda_server_thread:linda_server_process,

connected <<= A,

thread_symbol(TID),

assert(idaddr(TID,A)).

A call to this predicate first sends a connect message to the main thread
of the server and then waits for a connected response. The sender of the
connected message is the thread created to interact with this client. The
identity of the client thread together with the address of the server thread is
then asserted. The address is needed so that the client can send Linda queries
to the server thread (see below) and the thread identity is also asserted so that
a single process can contain several Linda client threads – each interacting
with their own server thread.

A client can send an in query, for example, to the server using the following
predicate.

linda_in(T) :-

thread_symbol(TID),

33

idaddr(TID,A),

in(T) ->> A,

ok(T) <<= A.

A call to this predicate first looks up the address of the server thread respon-
sible for this client and then sends an in message and waits for a response
from the server thread.

The goal ok(T) <<= A searches the incoming message buffer for a message
that unifies with this pattern. The call blocks until a matching message
arrives.

The examples directory also includes the file db.ql that gives another simple
example of the use of threads and messages to implement a shared database.

The following example from the examples directory (consumer.ql and producer.ql)
shows how subscriptions and notifications can be used to implement a pro-
duce/consumer model. Note that there can be any number of producers and
any number of consumers.

% The consumer

start :-

pedro_connect,

pedro_subscribe(producer(T), true, _),

message_loop.

message_loop :-

repeat,

M <<- _, % get the first message

write(M), nl,

M = producer(quit).

% The producer

start :-

pedro_connect.

34

send(Msg) :-

pedro_notify(producer(Msg)).

References

[1] Holger Becht, Anthony Bloesch, Ray Nickson and Mark Utting, Ergo
4.1 Reference Manual, Technical Report 96-31, Software Verification
Research Centre, Department of Computer Science, The University of
Queensland, St. Lucia, QLD 4072, Australia, November 1996.

[2] Mark Utting, Ray Nickson and Owen Traynor, Theory Structuring in
Ergo 4.1, Computing: The Australasian Theory Symposium, volume 18(3)
of Australian Computer Science Communications, Michael E. Houle and
Peter Eades eds, pages 137–146, 1996.

[3] P. J. Robinson and M. J. Walters, Qu-Prolog 6.0 reference manual Techni-
cal Report 00-21, Software Verification Research Centre, The University
of Queensland, St. Lucia, QLD 4072, Australia, December 2000.

[4] W. F. Clocksin and C. S. Mellish, Programming in Prolog, 3rd, revised
and extended ed., Springer-Verlag, Berlin, New York, 1987.

[5] Leon Sterling, and Ehud Shapiro, The Art of Prolog, The MIT Press,
Cambridge, Massachusetts, 1994.

[6] J. Andersson, S. Andersson, K. Boortz, M. Carlsson, H. Nilsson, T.,
Sjoland and J. Widen, SICStus Prolog User’s Manual, SICS technical
report T93:01, January 1993.

[7] P. Nickolas and P. J. Robinson, The Qu-Prolog Unification Algorithm:
Formalisation and Correctness, Theoretical Computer Science 169 (1996)
81-112.

[8] J.Roger Hindley and Jonathan P. Seldin, Introduction to Combinators
and λ-Calculus, London Mathematical Society Student Texts, Cambridge
University Press, Cambridge, 1986.

[9] G.P.Huet, A Unification Algorithm for Typed λ-Calculus, Theoretical
Computer Science 1 (1975) 27-57.

35

[10] A. Felty, Implementing Tactics and Tacticals in a Higher-Order Logic
Programming Language, Journal of Automated Reasoning, Vol. 11, No.
1, pp. 43-81, 1993.

[11] F. G. McCabe ICM Reference Manual. Fujitsu Labs of America,
http://www.nar.fla.com/icm/manual.html, 1999.

[12] N. Carriero and D. Gelernter Linda in context. CACM, 32(4),1989, pp.
444–458.

36

