Firebird Null Guide
NULL behaviour and pitfalls in Firebird SQL

Paul Vinkenoog

Version 1.2, 30 June 2020

Table of Contents

1. What is NULL?
1.1. NULL as a default state
2. NULL support in Firebird SQL
2.1. Disallowing NULL
2.2. Testing for NULL
2.3. Assigning NULL
2.4. Testing DISTINCTness (Firebird 2+)
2.5. The NULL literal
2.5.1. Firebird 1.5 and below
2.5.2. Firebird 2.0 and up
3. NULL in operations
3.1. Mathematical and string operations
3.2. Boolean operations
3.3. More logic (or not)
4. Internal functions and directives
4.1. Internal functions
4.2. FIRST, SKIP and ROWS
5. Predicates
5.1. The IN predicate
5.1.1. With an empty list
5.1.2. With a NULL test expression
5.1.3. With NULLs in the list
5.1.4. IN() results
5.1.5. IN() in CHECK constraints
5.2. The ANY, SOME and ALL quantifiers
5.2.1. Result values
5.3. EXISTS and SINGULAR
5.3.1. EXISTS
5.3.2. SINGULAR
6. Searches
7. Sorts
8. Aggregate functions
8.1. The GROUP BY clause
8.1.1. Counting frequencies
8.2. The HAVING clause
9. Conditional statements and loops
9.1. IF statements
9.2. CASE expression

Table of Contents

© O© 00 00 00 I N O O O = b

W DN DN DN DN DN DN DN DN DNDNDN = R = = = = =) e e e e s
SO © © 9 N O Uk N RO O 00NN N oUW W W =, o

Table of Contents

9.3. WHILE loops
9.4. FOR loops
10. Keys and unique indices
10.1. Primary keys
10.2. Unique keys and indices
10.2.1. Firebird 1.0
10.2.2. Firebird 1.5 and higher
10.3. Foreign keys
11. CHECK constraints
12. SELECT DISTINCT
13. User-Defined Functions (UDFs)
13.1. NULL <=> non-NULL conversions you didn’t ask for
13.2. Descriptors
13.3. Improvements in Firebird 2
13.3.1. “Upgrading” ib_udf functions in an existing database
13.4. Being prepared for undesired conversions
13.5. More on UDFs
14. Converting to and from NULL
14.1. Substituting NULL with a value
14.1.1. The COALESCE function
14.1.2. Firebird 1.0: the *NVL functions
14.2. Converting values to NULL
14.2.1. Firebird 1.5 and up: the NULLIF function
14.2.2. Firebird 1.0: the *nullif UDFs
15. Altering populated tables
15.1. Adding a non-nullable field to a populated table
15.1.1. Adding a NOT NULL field
15.1.2. Adding a CHECKed column
15.1.3. Using domains to add a non-nullable field
15.2. Making existing columns non-nullable
15.2.1. Making an existing column NOT NULL
15.2.2. Adding a CHECK constraint to an existing column
15.3. Making non-nullable columns nullable again
15.3.1. Removing a NOT NULL constraint
15.3.2. Removing a CHECK constraint
16. Changing the nullability of a domain
16.1. Adding and removing domain-level CHECK constraints
16.2. Altering a domain’s NOT NULL setting
17. Testing for NULL and equality in practice
17.1. Testing for NULL — if it matters
17.2. Equality tests

31
31
33
33
33
33
33
33
35
37
38
38
38
39
40
40
40
41
41
41
41
42
42
43
44
44
44
46
47
47
48
48
48
49
50
52
52
52
54
54
35

Table of Contents

17.2.1. Firebird 2.0 and up
17.2.2. Earlier Firebird versions
17.2.3. Summary of (in)equality tests
17.3. Finding out if a field has changed
18. Summary
Appendix A: NULL-related bugs in Firebird
Bugs that crash the server
EXECUTE STATEMENT with NULL argument
EXTRACT from NULL date
FIRST and SKIP with NULL argument
LIKE with NULL escape
Other bugs
NULLs in NOT NULL columns
[legal NULLs returned as @, ' ', etc.
Primary key with NULL entries
SUBSTRING results described as non-nullable
Gbak -n restoring NOT NULL
IN, = ANY and = SOME with indexed subselect

ALL with indexed subselect

SELECT DISTINCT with wrong NULLS FIRST|LAST ordering
UDFs returning values when they should return NULL

UDFs returning NULL when they should return a value

SINGULAR inconsistent with NULL results
Appendix B: Document history
Appendix C: License notice

Alphabetical index

35
35
56
57
58
60
60
60
60
60
60
60
60
60
61
61
61
61
61
62
62
62
62
63
65
66

Chapter 1. What is NULL?

Chapter 1. What is NULL?

Time and again, support questions pop up on the Firebird mailing lists about “strange things”
happening with NULLs. The concept seems difficult to grasp — perhaps partly because of the name,
which suggests a kind of “nothing” that won’t do any harm if you add it to a number or stick it to
the back of a string. In reality, performing such operations will render the entire expression NULL.

This guide explores the behaviour of NULL in Firebird SQL, points out common pitfalls and shows
you how to deal safely with expressions that contain NULL or may resolve to NULL.

If you only need a quick reference to refresh your memory, go to the summary at the end of the
guide.

So — whatis it?

In SQL, NULL is not a value. It is a state indicating that an item’s value is unknown or nonexistent. It
is not zero or blank or an “empty string” and it does not behave like any of these values. Few things
in SQL lead to more confusion than NULL, and yet its workings shouldn’t be hard to understand as
long as you stick to the following simple definition: NULL means unknown.

Let me repeat that:

NULL means UNKNOWN

Keep this line in mind as you read through the rest of the guide, and most of the seemingly illogical
results you can get with NULL will practically explain themselves.

o A few sentences and examples in this guide were taken from the Firebird Quick
Start Guide, first published by IBPhoenix, now part of the Firebird Project.

1.1. NULL as a default state

Because NULL means “value unknown?, it is the logical default state for any field or variable that has
been created but not provided with a value:

 If you declare a variable in a stored procedure or trigger, its value is undefined and its state is
NULL from the moment of creation until some value is assigned to it. The same is true for output
parameters in stored procedures.

* If you insert a record into a table and you only provide values for part of the fields, the
remaining fields will be initialised to NULL except where a default value is in effect or a value is
assigned by a “before insert” trigger.

 If you add a column to a table that already has records, the fields added to the existing records
will be NULL, except if you declare the column as NOT NULL and specify a default value for it. Note

Chapter 1. What is NULL?

that both conditions must be satisfied for the fields to become anything other than NULL.

Chapter 2. NULL support in Firebird SQL

Chapter 2. NULL support in Firebird SQL

Only a few language elements are purposely designed to give an unambiguous result with NULL
(unambiguous in the sense that some specific action is taken and/or a non-NULL result is returned).
They are discussed in the following paragraphs.

2.1. Disallowing NULL

In a column or domain definition, you can specify that only non-NULL values may be entered by
adding NOT NULL to the definition:

create table MyTable (i int not null)
create domain DTown as varchar(32) not null

alter table Sales add TransTime timestamp not null

Adding a NOT NULL column to an existing table that already contains records requires special care.
This operation will be discussed in detail in the section Altering populated tables.

2.2. Testing for NULL

If you want to know whether a variable, field or other expression is NULL, use the following syntax:
<expression> IS [NOT] NULL
Examples:

if (MyField is null) then YourString = 'Dunno’
select * from Pupils where PhoneNumber is not null

select * from Pupils where not (PhoneNumber 1is null)
/* does the same as the previous example */

Chapter 2. NULL support in Firebird SQL

update Numbers set Total = A + B + C where A + B + C is not null

delete from Phonebook where PhoneNum is null

Do not use “:- = NULL” to test for nullness. This syntax is illegal in Firebird versions up to 1.5.n, and
gives the wrong result in Firebird 2 and up: it returns NULL no matter what you compare. This is by
design, incidentally, and in that sense it’s not really wrong — it just doesn’t give you what you want.
The same goes for “:-- <> NULL”, so don’t use that either; use IS NOT NULL instead.

IS NULL and IS NOT NULL always return true or false; they never return NULL.

2.3. Assigning NULL

Setting a field or variable to NULL is done with the ‘=* operator, just like assigning values. You can
also include NULL in an insert list or use it as input parameter to a stored procedure (both are special
types of assignments).

if (YourString = 'Dunno') then MyField = null
update Potatoes set Amount = null where Amount < @
insert into MyTable values (3, '8-May-2004', NULL, 'What?')

select * from ProcessThis(88, 'Apes', Null)

Remember:

* You cannot— and should not — use the comparison operator ‘=’ to test if something is NULL...

* ...but you can — and often must — use the assignment operator ‘=’ to set something to NULL.

2.4. Testing DISTINCTness (Firebird 2+)

In Firebird 2 and higher only, you can test for the null-encompassing equality of two expressions
with “IS [NOT] DISTINCT FROM”:

if (A is distinct from B) then...

Chapter 2. NULL support in Firebird SQL
if (Buyer1 is not distinct from Buyer2) then...

Fields, variables and other expressions are considered:

» DISTINCT if they have different values or if one of them is NULL and the other isn’t;

o NOT DISTINCT if they have the same value or if both of them are NULL.
[NOT] DISTINCT always returns true or false, never NULL or something else.

With earlier Firebird versions, you have to write special code to obtain the same information. This
will be discussed later.

2.5. The NULL literal

The ability to use NULL literals depends on your Firebird version.

2.5.1. Firebird 1.5 and below

In Firebird 1.5 and below you can only use the literal word “NULL” in a few situations, namely the
ones described in the previous paragraphs plus a few others such as “cast(NULL as <datatype>)”
and “select NULL from MyTable”.

In all other circumstances, Firebird will complain that NULL is an unknown token. If you really must
use NULL in such a context, you have to resort to tricks like “cast(NULL as int)”, or using a field or
variable that you know is NULL, etc.

2.5.2. Firebird 2.0 and up

Firebird 2 allows the use of NULL literals in every context where a normal value can also be entered.
You can e.g. include NULL in an IN() list, write expressions like “if (MyField = NULL) then:--”, and
so on. However, as a general rule you should not make use of these new possibilities! In almost
every thinkable situation, such use of NULL literals is a sign of poor SQL design and will lead to NULL
results where you meant to get true or false. In that sense the earlier, more restrictive policy was
safer, although you could always bypass it with casts etc.—but at least you had to take deliberate
steps to bypass it.

Chapter 3. NULL in operations

Chapter 3. NULL in operations

As many of us have found out to our chagrin, NULL is contagious: use it in a numerical, string or
date/time operation, and the result will invariably be NULL. With boolean operators, the outcome
depends on the type of operation and the value of the other operand.

Please remember that in Firebird versions prior to 2.0 it is mostly illegal to use the constant NULL
directly in operations or comparisons. Wherever you see NULL in the expressions below, read it as “a
field, variable or other expression that resolves to NULL”. In Firebird 2 and above this expression
may also be a NULL literal.

3.1. Mathematical and string operations

The operations in this list always return NULL:
1+ 2+ 3+ NULL
5 * NULL - 7
e '"Home ' || 'sweet ' || NULL

MyField = NULL
* MyField <> NULL

NULL = NULL

If you have difficulty understanding why, remember that NULL means “unknown”. You can also look
at the following table where per-case explanations are provided. In the table we don’t write NULL in
the expressions (as said, this is often illegal); instead, we use two entities A and B that are both NULL.
A and B may be fields, variables, or even composite subexpressions — as long as they’re NULL, they’ll
all behave the same in the enclosing expressions.

Table 1. Operations on null entities A and B

If A and B are NULL, then: Is: Because:
1T+2+3+A NULL If A is unknown, then 6 + A is also unknown.
5*A -7 NULL If A is unknown, then 5 * Ais also unknown. Subtract

7 and you end up with another unknown.

"Home " || 'sweet ' || A NULL If A is unknown, 'Home sweet ' || Ais unknown.

MyField = A NULL If A is unknown, you can’t tell if MyField has the same
value...

MyField <> A NULL ...but you also can’t tell if MyField has a different value!

A=B8B NULL With A and B unknown, it’s impossible to know if they
are equal.

Chapter 3. NULL in operations

Here is the complete list of math and string operators that return NULL if at least one operand is
NULL:

+, -, * and /

* I=, ~= and "= (synonyms of <>)

* < <, > and >=

* 1<, ~<, and < (low-precedence synonyms of >=)
* 1>, ~> and > (low-precedence synonyms of <)
|l

» [NOT] BETWEEN

» [NOT] STARTING WITH

« [NOT] LIKE

« [NOT] CONTAINING

The explanations all follow the same pattern: if A is unknown, you can’t tell if it’s greater than B; if
string S1 is unknown, you can’t tell if it contains S2; etcetera.

Using LIKE with a NULL escape character would crash the server in Firebird versions up to and
including 1.5. This bug was fixed in v.1.5.1. From that version onward, such a statement will yield
an empty result set.

3.2. Boolean operations

All the operators examined so far return NULL if any operand is NULL. With boolean operators, things
are a bit more complex:

* not NULL = NULL

* NULL or false = NULL

e NULL or true = true

e NULL or NULL = NULL

e NULL and false = false
e NULL and true = NULL

NULL

* NULL and NULL

In version 2.5 and earlier, Firebird SQL doesn’t have a boolean data type; nor are true and false
existing constants. In the leftmost column of the explanatory table below, “true” and “false”
represent expressions (fields, variables, composites...) that evaluate to true/false.

Table 2. Boolean operations on null entity A

10

Chapter 3. NULL in operations

If Ais NULL, then: Is: Because:

not A NULL If A is unknown, its inverse is also unknown.

A or false NULL “A or false” always has the same value as A— which is
unknown.

A or true true “A or true”is always true —A's value doesn’t matter.

A or A NULL “A or A” always equals A— which is NULL.

A and false false “A and false” is always false —A's value doesn’t matter.

A and true NULL “A and true” always has the same value as A— which is
unknown.

A and A NULL “A and A” always equals A— which is NULL.

All these results are in accordance with boolean logic. The fact that you don’t need to know X's
value to compute “X or true” and “X and false” is also the basis of a feature found in various
programming languages: short-circuit boolean evaluation.

The above results can be generalised as follows for expressions with one type of binary boolean
operator (and | or) and any number of operands:

Disjunctions (“A or B or C or D or --+”)

1. If at least one operand is true, the result is true.
2. Else, if at least one operand is NULL, the result is NULL.

3. Else (i.e. if all operands are false) the result is false.

Conjunctions (“A and B and C and D and --+”)

1. If at least one operand is false, the result is false.
2. Else, if at least one operand is NULL, the result is NULL.

3. Else (i.e. if all operands are true) the result is true.
Or, shorter:

* TRUE beats NULL in a disjunction (OR-operation);
* FALSE beats NULL in a conjunction (AND-operation);

e In all other cases, NULL wins.

If you have trouble remembering which constant rules which operation, look at the second letter:
tRue prevails with oR — fAlse with And.

3.3. More logic (or not)

The short-circuit results obtained above may lead you to the following ideas:

11

Chapter 3. NULL in operations

0 times x equals 0 for every x. Hence, even if x's value is unknown, @ * x is 0. (Note: this only
holds if x's datatype only contains numbers, not ‘NaN or infinities.)

The empty string is ordered lexicographically before every other string. Therefore, S >= "' is

true whatever the value of S.

Every value equals itself, whether it’s unknown or not. So, although A = B justifiably returns
NULL if A and B are different NULL entities, A = A should always return true, even if A is NULL. The
same goes forA < Aand A >= A.

By analogous logic, A <> A should always be false,aswellasA < Aand A > A

Every string contains itself, starts with itself and is like itself. So, “S CONTAINING S”, “S STARTING
WITH S” and “S LIKE S” should always return true.

How is this reflected in Firebird SQL? Well, I'm sorry I have to inform you that despite this
compelling logic—and the analogy with the boolean results discussed above—the following
expressions all resolve to NULL:

0 * NULL

NULL >= ""and '' « NULL

A=AA < AandA >= A

A< AA<AandA > A

S CONTAINING S,S STARTING WITH SandS LIKE S

So much for consistency.

12

Chapter 4. Internal functions and directives

Chapter 4. Internal functions and directives

4.1. Internal functions

The following built-in functions return NULL if at least one argument is NULL:

» CAST()

» EXTRACT()

* GEN_ID()

» SUBSTRING()

* UPPER()

* LOWER()

* BIT_LENGTH()

* CHAR[ACTER]_LENGTH()
* OCTET_LENGTH()

o TRIM()
Notes
e In 1.0.0, EXTRACT from a NULL date would crash the server. Fixed in 1.0.2.
« If the first argument to GEN_ID is a valid generator name and the second
o argument is NULL, the named generator keeps its current value.

* In versions up to and including 2.0, SUBSTRING results are sometimes returned
as “false emptystrings”. These strings are in fact NULL, but are described by the
server as non-nullable. Therefore, most clients show them as empty strings. See
the bugs list for a detailed description.

4.2. FIRST, SKIP and ROWS

The following two directives crash a Firebird 1.5.n or lower server if given a NULL argument. In
Firebird 2, they treat NULL as the value 0:

o FIRST
» SKIP

This new Firebird 2 directive returns an empty set if any argument is NULL:
* ROWS

In new code, use ROWS, not FIRST and SKIP.

13

Chapter 5. Predicates

Chapter 5. Predicates

Predicates are statements about objects that return a boolean result: true, false or unknown (= NULL).
In computer code you typically find predicates in places where a yes/no type of decision has to be
taken. For Firebird SQL, that means in WHERE, HAVING, CHECK, CASE WHEN, IF and WHILE clauses.

Comparisons such as “x > y” also return boolean results, but they are generally not called
predicates, although this is mainly a matter of form. An expression like Greater(x, y) that does
exactly the same would immediately qualify as a predicate. (Mathematicians like predicates to have
a name — such as “Greater” or just plain “G” —and a pair of parentheses to hold the arguments.)

Firebird supports the following SQL predicates: IN, ANY, SOME, ALL, EXISTS and SINGULAR.

It is also perfectly defensible to call “IS [NOT] NULL” and “IS [NOT] DISTINCT FROM”
0 predicates, despite the absence of parentheses. But, predicates or not, they have
already been introduced and won’t be discussed in this section.

5.1. The IN predicate

The IN predicate compares the expression on its left-hand side to a number of expressions passed in
the argument list and returns true if a match is found. NOT IN always returns the opposite of IN.
Some examples of its use are:

select RoomNo, Floor from Classrooms where Floor in (3, 4, 5)
delete from Customers where upper(Name) in ('UNKNOWN', 'NN', '')

if (A not in (MyVar, MyVar + 1, YourVar, HisVar)) then ...
The list can also be generated by a one-column subquery:

select ID, Name, Class from Students
where ID in (select distinct LentTo from LibraryBooks)

5.1.1. With an empty list

If the list is empty (this is only possible with a subquery), IN always returns false and NOT IN always
returns true, even if the test expression is NULL. This makes sense: even if a value is unknown, it is
certain not to occur in an empty list.

14

Chapter 5. Predicates

5.1.2. With a NULL test expression

If the list is not empty and the test expression —called “A” in the examples below —is NULL, the
following predicates will always return NULL, regardless of the expressions in the list:

o« A IN (Expr1, Expr2, -, ExprN)
o A NOT IN (Expr1, Expr2, -+, ExprN)

The first result can be understood by writing out the entire expression as a disjunction (OR-chain) of
equality tests:

A=Expr1 or A=Expr2 or ... or A=ExprN
which, if A is NULL, boils down to
NULL or NULL or ... or NULL

which is NULL.

The nullness of the second predicate follows from the fact that “not (NULL)” equals NULL.

5.1.3. With NULLs in the list

If A has a proper value, but the list contains one or more NULL expressions, things become a little
more complicated:

« If at least one of the expressions in the list has the same value as A:

o “A IN(Expr1, Expr2, -+-, ExprN)” returns true
o “A NOT IN(Expr1, Expr2, -+, ExprN)” returns false

This is due to the fact that “true or NULL” returns true (see above). Or, more general: a
disjunction where at least one of the elements is true, returns true even if some other elements
are NULL. (Any falses, if present, are not in the way. In a disjunction, true rules.)

* If none of the expressions in the list have the same value as A:

o “A IN(Expr1, Expr2, -+, ExprN)” returns NULL
o “A NOT IN(Expr1, Expr2, ---, ExprN)” returns NULL

This is because “false or NULL” returns NULL. In generalised form: a disjunction that has only
false and NULL elements, returns NULL.

Needless to say, if neither A nor any list expression is NULL, the result is always as expected and can
only be true or false.

15

Chapter 5. Predicates

5.1.4. IN() results

The table below shows all the possible results for IN and NOT IN. To use it properly, start with the
first question in the left column. If the answer is No, move on to the next line. As soon as an answer
is Yes, read the results from the second and third columns and you’re done.

Table 3. Results for “A [NOT] IN (<list>)”

Conditions Results
IN(Q) NOT IN()
Is the list empty? false true
Else, is ANULL? NULL NULL
Else, is at least one list element equal to A? true false
Else, is at least one list element NULL? NULL NULL
Else (i.e. all list elements are non-NULL and unequal to A) false true

In many contexts (e.g. within IF and WHERE clauses), a NULL result behalves like false in that the
condition is not satisfied when the test expression is NULL. On the one hand this is convenient for
cases where you might expect false but NULL is returned: you simply won’t notice the difference. On
the other hand, this may also lead you to expect true when the expression is inverted (using NOT)
and this is where you’ll run into trouble. In that sense, the most “dangerous” case in the above table
is when you use an expression of the type “A NOT IN (<list>)”, with A indeed not present in the list
(so you’d expect a clear true result), but the list happens to contain one or more NULLSs.

Be especially careful if you use NOT IN with a subselect instead of an explicit list,
e.g.

A not in (select Number from MyTable)

o If A is not present in the Number column, the result is true if no Number is NULL, but
NULL if the column does contain a NULL entry. Please be aware that even in a
situation where A is constant and its value is never contained in the Number column,
the result of the expression (and therefore your program flow) may still vary over
time according to the absence or presence of NULLs in the column. Hours of
debugging fun! Of course you can avoid this particular problem simply by adding
“where Number is not NULL” to the subselect.

16

Chapter 5. Predicates

Bug alert
All Firebird versions before 2.0 contain a bug that causes [NOT] IN to return the
wrong result if an index is active on the subselect and one of the following
conditions is true:

* Ais NULL and the subselect doesn’t return any NULLs, or

* A is not NULL and the subselect result set doesn’t contain A but does contain

NULL(s).

Please realise that an index may be active even if it has not been created explicitly,
namely if a key is defined on A.

Example: Table TA has a column A with values { 3, 8 }. Table TB has a column B
containing { 2, 8, 1, NULL }. The expressions:

A [not] in (select B from TB)

should both return NULL for A = 3, because of the NULL in B. But if B is indexed, IN
returns false and NOT IN returns true. As a result, the query

select A from TA where A not in (select B from TB)

returns a dataset with one record — containing the field with value 3 —while it
should have returned an empty set. Other errors may also occur, e.g. if you use
“NOT IN”in an IF, CASE or WHILE statement.

As an alternative to NOT 1IN, you can use “<> ALL”. The ALL predicate will be
introduced shortly.

5.1.5. IN() in CHECK constraints

The IN() predicate is often used in CHECK constraints. In that context, NULL expressions have a
surprisingly different effect in Firebird versions 2.0 and up. This will be discussed in the section

CHECK constraints.

5.2. The ANY, SOME and ALL quantifiers

Firebird has two quantifiers that allow you to compare a value to the results of a subselect:

* ALL returns true if the comparison is true for every element in the subselect.

* ANY and SOME (full synonyms) return true if the comparison is true for at least one element in the

With ANY, SOME and ALL you provide the comparison operator yourself. This makes it more flexible

17

Chapter 5. Predicates

than IN, which only supports the (implicit) ‘= operator. On the other hand, ANY, SOME and ALL only
accept a subselect as an argument; you can’t provide an explicit list, as with IN.

Valid operators are =, !=, <, >, =<, = and all their synonyms. You can’t use LIKE, CONTAINING, IS
DISTINCT FROM, or any other operators.

Some usage examples:

select name, income from blacksmiths
where income > any(select income from goldsmiths)

(returns blacksmiths who earn more than at least one goldsmith)

select name, town from blacksmiths
where town != all(select distinct town from goldsmiths)

(returns blacksmiths who live in a goldsmithless town)

if (GSIncome !> some(select income from blacksmiths))
then PoorGoldsmith = 1;
else PoorGoldsmith = 0;

(sets PoorGoldsmith to 1 if at least one blacksmith’s income is not less than the value of
GSIncome)

5.2.1. Result values

If the subselect returns an empty set, ALL returns true and ANY|SOME return false, even if the left-
hand side expression is NULL. This follows from the definitions and the rules of formal logic. (Math-
heads will already have noticed that ALL is equivalent to the universal (“A”) quantifier and ANY | SOME
to the existential (“E”) quantifier.)

For non-empty sets, you can write out “A <op> {ANY|SOME} (<subselect>)” as

A <op> E1 or A <op> E2 or ... or A <op> En

with <op> the operator used and E1, E2 etc. the items returned by the subquery.

Likewise, “A <op> ALL (<subselect>)” is the same as

A <op> E1 and A <op> E2 and ... and A <op> En

This should look familiar. The first writeout is equal to that of the IN predicate, except that the

18

Chapter 5. Predicates

operator may now be something other than ‘=’. The second is different but has the same general
form. We can now work out how nullness of A and/or nullness of subselect results affect the
outcome of ANY | SOME and ALL. This is done in the same way as earlier with IN, so instead of including
all the steps here we will just present the result tables. Again, read the questions in the left column
from top to bottom. As soon as you answer a question with “Yes”, read the result from the second
column and you’re done.

Table 4. Results for “A <op> ANY|SOME (<subselect>)”

Conditions Result
ANY | SOME
Does the subselect return an empty set? false
Else, is ANULL? NULL
Else, does at least one comparison return true? true
Else, does at least one comparison return NULL? NULL
Else (i.e. all comparisons return false) false

If you think these results look a lot like what we saw with IN(), you’re right: with the ‘=’ operator,
ANY is the same as IN. In the same way, “<> ALL” is equivalent to NOT IN.

Bug alert (revisited)

In versions before 2.0, “= ANY” suffers from the same bug as IN. Under the “right”
A circumstances, this can lead to wrong results with expressions of the type “NOT A =
ANY(-+)™

On the bright side, “<> ALL” is not affected and will always return the right result.

Table 5. Results for “A <op> ALL (<subselect>)”

Conditions Result
ALL
Does the subselect return an empty set? true
Else, is ANULL? NULL
Else, does at least one comparison return false? false
Else, does at least one comparison return NULL? NULL
Else (i.e. all comparisons return true) true

19

Chapter 5. Predicates

ALL bug

Although “<> ALL” always works as it should, ALL should nevertheless be

A considered broken in all pre-2.0 versions of Firebird: with every operator other
than “<>”, wrong results may be returned if an index is active on the
subselect — with or without NULLs around.

Strictly speaking, the second question in both tables (“is A NULL?”) is redundant and

can be dropped. If A is NULL, all the comparisons return NULL, so that situation will

be caught a little later. And while we’re at it, we could drop the first question too:

the “empty set” situation is just a special case of the final “else”. The whole thing

then once again boils down to “true beats NULL beats false” in disjunctions (ANY
o | SOME) and “false beats NULL beats true” in conjunctions (ALL).

The reason we included those questions is convenience: you can see if a set is
empty at a glance, and it’s also easier to check if the left-hand side expression is
NULL than to evaluate each and every comparison result. But do feel free to skip
them, or to skip just the second. Do not, however, skip the first question and start
with the second: this will lead to a wrong conclusion if the set is empty!

5.3. EXISTS and SINGULAR

The EXISTS and SINGULAR predicates return information about a subquery, usually a correlated
subquery. You can use them in WHERE, HAVING, CHECK, CASE, IF and WHILE clauses (the latter two are
only available in PSQL, Firebird’s stored procedure and trigger language).

5.3.1. EXISTS

EXISTS tells you whether a subquery returns at least one row of data. Suppose you want a list of
farmers who are also landowners. You could get one like this:

SELECT Farmer FROM Farms WHERE EXISTS
(SELECT * FROM Landowners
WHERE Landowners.Name = Farms.Farmer)

This query returns the names of all farmers who also figure in the Landowners table. The EXISTS
predicate returns true if the result set of the subselect contains at least one row. If it is empty, EXISTS
returns false. EXISTS never returns NULL, because a result set always either has rows, or hasn’t. Of
course the subselect’s search condition may evolve to NULL for certain rows, but that doesn’t cause
any uncertainty: such a row won’t be included in the subresult set.

20

Chapter 5. Predicates

In reality, the subselect doesn’t return a result set at all. The engine simply steps
through the Landowners records one by one and applies the search condition. If it

e evaluates to true, EXISTS returns true immediately and the remaining records
aren’t checked. If it evaluates to false or NULL, the search continues. If all the
records have been searched and there hasn’t been a single true result, EXISTS
returns false.

NOT EXISTS always returns the opposite of EXISTS: false or true, never NULL. NOT EXISTS returns false
immediately if it gets a true result on the subquery’s search condition. Before returning true it must
step through the entire set.

5.3.2. SINGULAR

SINGULAR is an InterBase/Firebird extension to the SQL standard. It is often described as returning
true if exactly one row in the subquery meets the search condition. By analogy with EXISTS this
would make you expect that SINGULAR too will only ever return true or false. After all, a result set
has either exactly 1 row or a different number of rows. Unfortunately, all versions of Firebird up to
and including 2.0 have a bug that causes NULL results in a number of cases. The behaviour is pretty
inconsistent, but at the same time fully reproducible. For instance, on a column A containing (1,
NULL, 1), a SINGULAR test with subselect “A=1” returns NULL, but the same test on a column with (1, 1,
NULL) returns false. Notice that only the insertion order is different here!

To make matters worse, all versions prior to 2.0 sometimes return NULL for NOT SINGULAR where
false or true is returned for SINGULAR. In 2.0, this at least doesn’t happen anymore: it’s either false
vs. true or twice NULL.

The code has been fixed for Firebird 2.1; from that version onward SINGULAR will return:

 false if the search condition is never true (this includes the empty-set case);
* true if the search condition is true for exactly 1 row;

o false if the search condition is true for more than 1 row.
Whether the other rows yield false, NULL or a combination thereof, is irrelevant.
NOT SINGULAR will always return the opposite of SINGULAR (as is already the case in 2.0).

In the meantime, if there’s any chance that the search condition may evolve to NULL for one or more
rows, you should always add an IS NOT NULL condition to your [NOT] SINGULAR clauses, e.g. like this:

. SINGULAR(SELECT * from MyTable
WHERE MyField > 38
AND MyField IS NOT NULL)

21

Chapter 6. Searches

Chapter 6. Searches

If the search condition of a SELECT, UPDATE or DELETE statement resolves to NULL for a certain row, the
effect is the same as if it had been false. Put another way: if the search expression is NULL, the
condition is not met, and consequently the row is not included in the output set (or is not
updated/deleted).

o The search condition or search expression is the WHERE clause minus the WHERE
keyword itself.

Some examples (with the search condition in boldface):
SELECT Farmer, Cows FROM Farms WHERE Cows > @ ORDER BY Cows

The above statement will return the rows for farmers that are known to possess at least one cow.
Farmers with an unknown (NULL) number of cows will not be included, because the expression
“NULL > 0” returns NULL.

SELECT Farmer, Cows FROM Farms WHERE NOT (Cows > @) ORDER BY Cows

Now, it’s tempting to think that this will return “all the other records” from the Farms table, right?
But it won’t—not if the Cows column contains any NULLs. Remember that not(NULL) is itself NULL. So
for any row where Cows is NULL, “Cows > ©” will be NULL, and “NOT (Cows > @)” will be NULL as well.

SELECT Farmer, Cows, Sheep FROM Farms WHERE Cows + Sheep > 0

On the surface, this looks like a query returning all the farms that have at least one cow and/or
sheep (assuming that neither Cows nor Sheep can be a negative number). However, if farmer Fred
has 30 cows and an unknown number of sheep, the sum Cows + Sheep becomes NULL, and the entire
search expression boils down to “NULL > ©”, which is... you got it. So despite his 30 cows, our friend
Fred won’t make it into the result set.

As a last example, we shall rewrite the previous statement so that it will return any farm which has
at least one animal of a known kind, even if the other number is NULL. To do that, we exploit the fact
that “NULL or true” returns true —one of the rare occasions where a NULL operand doesn’t render
the entire expression NULL:

SELECT Farmer, Cows, Sheep FROM Farms WHERE Cows > @ OR Sheep > 0
This time, Fred’s thirty cows will make the first comparison true, while the sheep bit is still NULL. So

we have “true or NULL”, which is true, and the row will be included in the output set.

22

Chapter 6. Searches
If your search condition contains one or more IN predicates, there is the additional

complication that some of the list elements (or subselect results) may be NULL. The
implications of this are discussed in The IN predicate.

23

Chapter 7. Sorts

Chapter 7. Sorts

In Firebird 2, NULLs are considered “smaller” than anything else when it comes to sorting.
Consequently, they come first in ascending sorts and last in descending sorts. You can override this
default placement by adding a NULLS FIRST or NULLS LAST directive to the ORDER BY clause.

In earlier versions, NULLs were always placed at the end of a sorted set, no matter whether the order
was ascending or descending. For Firebird 1.0,