Manual for the editor EmACT

Page # 25

EmACT v2.57.0
Reference Manual

Christian Jullien

(Initial translation by Nigel Brown)

1.
CONTENTS

21.
CONTENTS

2.
INTRODUCTION
3
3.
INSTALLATION
4
3.1.
Installation under MS-DOS, Windows NT/W2K, Windows 95 or OS/2
4
3.2.
Installation under Pocket PC
4
3.3.
Characteristics under the Windows 3.x (16 bits) environment.
5
3.4.
Characteristics of the version delivered with Le-Lisp.
5
3.5.
Installation under UNIX.
5
3.6.
Creation of executable (only relevant to the source distribution)
5
4.
DESCRIPTION OF THE COMMANDS
7
4.1.
Simple commands
7
4.2.
The commands made up of Meta type
8
4.3.
Commands of the Control-X type
8
4.4.
Organization of the screen
8
4.5.
Online Help
9
4.6.
Use of the mouse
9
4.7.
Functions to move the cursor
9
4.8.
Modifying functions
10
4.9.
File functions
10
4.10.
Commands for handling of buffers
11
4.11.
Functions on windows
12
4.12.
Editing modes
12
4.13.
Automated search
13
4.14.
Dynamic expansion of text
13
4.15.
Functions on text regions
14
4.16.
Functions on paragraphs
14
4.17.
Functions on tags
14
4.18.
Macros
15
4.19.
Use of a counter
15
4.20.
Functions acting on the host system
16
4.21.
Miscellaneous commands and functions
17
4.22.
Editor variables
18
5.
WRITING MACROS
20
6.
Appendix – the primitives of EmACT
23

2.
INTRODUCTION

Emacs is doubtless the most popular editor for Lisp programmers. Initially developed in Lisp by Richard Mr. Stallman with MIT, it was rewritten as many versions in various languages (Gosling Emacs, C-macs, GNU-Emacs, XEmacs, MicroEmacs, Gmacs, lemacs, Zmacs, Freemacs, Epsilon, Jove, JED, Edwin...).

EmACT is a GNU GPL implementation initially adapted to the writing of the programs of the Le-Lisp system from INRIA on PC. It has the advantage of being not very greedy for memory capacity and to be easily portable to various machines. For example, it is integrated into the distributions of Le-Lisp, OpenLisp, and, in its standard version, EmACT has been ported, to date, to MS-DOS, Windows 3.x, Windows NT/W2K, Windows 9x, Pocket PC 2002 (StrongARM) XENIX, OS/2 1.x and 2.x (text and Presentation Manager), UNIX System V.3 and V.4, Linux, a range of SUN under SUN/OS and Solaris, to VAX, under ULTRIX, BSD4.[1-4] or VMS, under IBM AIX, SPIX-like under the majority of the UNIX systems using the X11 environment and the functions of Xlib and, finally on QNX. In general, the implementation on a new system not listed does not pose any problem. The core of the source code, entirely in C, respects standards NF EN 29899:1993 - ISO/IEC 9899:1990 (C Language), and NF EN 29945-1:1994 - ISO/IEC 9945-1:1990 (POSIX 1003.1).

3.
INSTALLATION

EmACT can be provided on several physical media, such as on diskettes, CDROM or on cartridge in a format specific to each computer. When it is delivered with Le-Lisp, it is automatically placed in the directory at the same time as the binaries of the Le-Lisp system.

3.1.
Installation under MS-DOS, Windows NT/W2K, Windows 95 or OS/2

On the operating systems of the PC type, EmACT is delivered as a diskette of 1.44 Mb. To install the editor, place the diskette in your reader, then type the command:

C>A:INSTALL <path>

Where <path> indicates the directory in which the executable will be accessible.

 Example:

C>A:INSTALL C:\emacs

This procedure will also copy the files of macros of EmACT in the directory \usr\lib\emacs.

3.2.
Installation under Pocket PC

On Pocket PC 2002 (StrongARM), EmACT is delivered as a self extracting archive that will install the editor and its associated files under “\Program Files\EmACT” directory by default. Be sure that your Pocket PC is already connected to its station before setup. On the PC, simply launch the setup with this simple command and follow instructions.

C>emacs-ARM.exe
This procedure will also copy the files of macros of EmACT in the directory “\Program Files\EmACT\lib”.

3.3.
Characteristics under the Windows 3.x (16 bits) environment.

EmACT functions under the Windows 3.x environment starting from version 3.0 in standard mode or extended 386 mode. It uses the standard dialogue boxes provided starting from version 3.1 of Windows. If you want to use this editor with version 3.0, you must have a copy of COMMDLG.DLL in the Windows system directory (in general \windows\system).

3.4.
Characteristics of the version delivered with Le-Lisp.

When it is delivered with Le-Lisp, EmACT is placed automatically in the same directory as the binaries of Le-Lisp. To call the editor from the interpreter, one can use the function lisp comline (macro-character '!') or the macro-character ^F followed of a name of function. For more details, please consult the documentation of Le-Lisp.

Ex:
? !emacs foo.ll

? (comline "emacs")

? ^Fsort

3.5.
Installation under UNIX.

Under UNIX, EmACT is delivered on a great range of physical media but always in tar format. While being super-user (i.e. su), go in the directory where you wish to install EmACT (or xemacs, the version under X-Window), then install the contents of the media by means of the command tar.

E.g.:

tar xv

default device

tar xvf /dev/fd0
device disk

tar xvf /dev/rst0
device rst

This procedure will also copy the files of macros of EmACT in the directory /usr/lib/emacs.

3.6.
Creation of executable (only relevant to the source distribution)

On most unix compatible systems, the best solution is to use GNU autoconf tools. The following commands should generally work:

Prompt> ./configure
Prompt> make
Prompt> make install
If it does not work for you, choose as input the generic makefile which corresponds most closely to your system (posix-iso for example on compatible systems POSIX and supporting C ISO, dos-msc or win-msc to build the binary ones under dos and Windows, nt-msc for NT/W2K…). Then type "make system". In the majority of the cases, this operation is sufficient to create executable name ‘ed’, ‘emact’, or ‘emacs*’ in the current directory (this in order not to overload the access to a older version of EmACT). When this version functions, type " make install ", to give the executable the name "emacs" and to make it available to all.
The following variables systems can be used to modify the behavior of EmACT.

SHELL

Shell of command launched from editor

EMACSCP
Codepage used to edit files.

EMACSLIB
Name of the directory containing the files *.lsp

With the exception of x11, these various versions use CURSES package, being limited to the functions most usually implemented. Certain terminals function in mode XON/OFF and prohibit the access of the keys Ctrl-Q, Ctrl-S. In this case, equivalents ESC-s and ESC-q should be employed. As for the x11 version, it uses the libraries of Xlib X11. On X-Window one can set user preferences by putting them in a .Xdefault file in the directory of each user (consult X documentation). The currently supported options are as follows: foreground, background, border, terminal and geometry.

Example of file .Xdefault

xemacs.forgeground:
Grey

xemacs.background:
NavyBlue

xemacs.border:
Black

xemacs.geometry:
60x80+0+0

xemacs.font:
Rom14.500

For this last option (font), it is imperative to use character fonts of non-proportional spacing.

These options can be also changed when starting from the command line. They must appear before the standard parameters. The supported options are:

-foreground, -fg
: change the color of the characters

-background, -bg
: change the color of the background

-display
: change the current display
-font
: change the current font
-boder
: change the color of the border
-geometry
: change the initial position

-nw
: use the package curses instead of X11

Example :

$ xemacs -font 10x20 -bg NavyBlue Makefile

4.
DESCRIPTION OF THE COMMANDS

The various Emacs editors have in common a range of commands and functionalities usable, in general, from the keyboard. Those of EmACT inherit more especially the commands of GNU Emacs. A good compatibility with this editor is obtained by setting the gnu-compatible variable with T (default value). Contrary to other editors under UNIX (VI in particular), Emacs does not distinguish the edit mode and the command mode, which gives a greater flexibility to Emacs. The standard mode is the insertion mode and the commands act directly on the contents of the edit buffer. Each command is associated with a function that carries out the required action. In general, there is a key or a combination of keys to directly reach this function, but it is possible to carry out an action by directly calling upon the function by its name by means of following ESC-x with the name of the function. To go up of a line in the edit buffer, one uses the Ctrl-P command, but one can also employ the ESC-xprevious-line form that carries out the command associated with this key. One especially uses the names of functions to carry out extensions implemented by means of the Lisp language provided with EmACT. The complete list of the names of functions and their combination of keys is given in the appendix.

There are several types of commands:

4.1.
Simple commands

Simple commands are of type "Control" where it is enough to press on CTRL key of the keyboard then, while leaving pressed the CTRL key, press at the same time the key related to the command.

For example, the Control-E command which makes it possible to go to the end of the line is activated by pressing at the same time on key CTRL and on the key E (upper or lower letter does not matter for control sequence). Generally, the commands related to the control keys make it possible to move inside the text and have mnemonics like the English command. One finds, in this category, CTRL-E (end-of-line), CTRL-B (backward-character), CTRL-F (forward-character), CTRL-P (previous-line), CTRL-D (delete-character), etc... In the rest of this documentation, we will adopt the shortened form "C-" to indicate the commands "Control" as in C-F, which corresponds to CTRL-F.

4.2.
The commands made up of Meta type

The editors of the Emacs type have too many functionalities to assign each one to the control of a key of the keyboard. The less usual commands, or those which include several characters at the same time, are activated by the combination of two keys: the code prefixes which selects a new group of commands, then the code itself which starts the desired action. The first type of made up command is activated by the key "Meta" which corresponds in general to key ESC (escape). For example, to move in Lisp mode, it is necessary to press on ESC then on Ctrl-L the standard abbreviation of META is "M-" as in M-C-L which corresponds to combinations ESC then Control-L.

4.3.
Commands of the Control-X type

Finally, the last type of commands, those prefixed by "Ctrl-X" which, in the manner of ESC, give access to another command set. The Ctrl-XCtrl-C command makes it possible for example to exit the editor; its abbreviation is C-XC-C.

4.4.
Organization of the screen

The screen is divided into 3 distinct logical units. These are:

· the window of text (that which makes it possible to see and to modify the programs).

· the message line which corresponds to the last physical line of your screen and by which the editor communicates with the user.

· the status line associated with the edit window gives you information on the text that is being edited (name, mode of edition, modified file or not.).

[image: image1.wmf]

Find file: /usr/lib/emacs/emacs.lsp

/usr/lib/emacs/emacs.lsp/uu//////usr/l

EmACT: v2.

5

4

 (Lisp) *scratch*

-

 L1 (100%)

EmACT: v2.

5

4

 (Lisp) *scratch*

-

 L1 (100%)

Via horizontal windows, EmACT gives the possibility of visualizing several files with the screen at the same time. With each window is associated a status line located below the edit window and generally of a color or a video attribute distinct from that of the edit window.
4.5.
Online Help

At any moment, you can have a window of very simplified assistance that describes all the commands available of the editor. To obtain it, type simply M-?, which causes creation of a second window in which the beginning of the commands of the editor appears. You can go to this window by typing C-Xo (other-window) and you move downwards there by C-V or upwards by M-v (most terminals like the PC or the VT100 consoles give access to these functions by the arrow keys of the numeric keypad). To return to the preceding window, type C-Xo again. Under DOS/Windows, the F1 key gives access to a complete on-line help, which includes a part of this handbook. On certain systems (NT, Windows 95, Unix), one can automatically launch user defined help files. Those can be in HTML format (extension htm or html) on all the systems supporting tools making it possible to read this format. On the various Windows systems, they can be, moreover, with the format .hlp. One can configure up to 4 help files named respectively help-file1 (push F11), help-file2 (push F12), help-file3 (push Alt-F11) and help-file2 (push Alt-F12).

To automatically launch the assistance using these keys, it is enough to configure the file emacs.lsp so that these variables point on the desired file. In the case of the .hlp format, the system of assistance tries to find information corresponding to the word positioned under the cursor.

(setq help-file1 "d:/jdk1.4/hlp/jdk.hlp")

(setq help-file2 "c:/usr/lib/cplusplus/iso/index.html")

4.6.
Use of the mouse

On the systems having a pointing device, the mouse can be used to position the cursor or to make selections. EmACT uses only the first two buttons of the mouse starting from the left. The button on the left is called button1 and the following, if there exists, button2. Certain actions can be called by combining the button click with one of the modification keys of the keyboard: shift or control.

The command button1 is used to change the position of the cursor or, possibly, to change active window. A shift-button1 makes it possible to make a selection starting from the last known position of the cursor and the new position determined by the site of the pointer. This selection is copied in an internal buffer and, on certain systems (Windows or X11), into the clipboard, which can be used to exchange between several applications. To copy the contents of the clipboard or the internal buffer, it is enough to make a click on the button2 of the mouse (i.e. the button of right-hand side if the mouse has two buttons or that of the middle if it has three of them). The selection previously copied fits into the place indicated by the pointer. If you click on control-button2, the selection is copied into the internal buffer and the corresponding region is deleted from the current edit buffer. Lastly, control-button1 carries out the action on a selection without the cursor being moved.

4.7.
Functions to move the cursor

These commands modify the current position of the mark in the active edit window. They result in the cursor moving to the new position. On most operating systems, these commands are also accessible by means of the cursor control keys.

Move to beginning of line
(Ctrl-A)

Move to the preceding character
(Ctrl-B)

Move to the end of line
(Ctrl-E)

Move to the following character
(Ctrl-F)

Move to the next line
(Ctrl-N)

Move to the preceding line
(Ctrl-P)

Move forward one screenful
(Ctrl-V)

Move to end of file
(ESC->)

Move to beginning of file
(ESC-<)

Move to following word
(ESC-F)

Move to line number (alternative)
(ESC-N)

Move to line number
(ESC-G)

Move backward one screenful
(ESC-V)

Move to preceding word
(ESC-B)

Move the screen down one line
(Ctrl-XCtrl-N)

Move the screen up one line
(Ctrl-XCtrl-P)

Make current line top of screen
(ESC-!)

4.8.
Modifying functions

These commands modify the contents of the current edit buffer by adding, removing, or replacing a part of the text. The modifications will be effective only after having saved the contents of the buffer to disk.

Erase the preceding character
(Ctrl-H) or DEL

Erases until the end of line
(Ctrl-K)

Insert a new line
(Ctrl-M)

Cut the current line
(Ctrl-O)

Insert a special character
(Ctrl-Q) or (ESC-q)

Exchange the 2 characters preceding
(Ctrl-T)

Delete the region and write it into the kill-buffer
(Ctrl-W)

Insert the kill-buffer contents at current position
(Ctrl-Y)

Delete blank lines
(Ctrl-XCtrl-O)

Exchange a line with the preceding one
(Ctrl-XCtrl-T)

Delete the following word
(ESC-d)

Delete the preceding word
(ESC-del) or (ESC-Ctrl-H)

Put a capital letter on word
(ESC-c)

Exchange the word insertion/replacement
(ESC-i)

Convert a word to lowercase
(ESC-l)

Exchange a word with its precedent
(ESC-t)

Convert a word to uppercase
(ESC-u)

Insert exactly one space
(ESC-space)

4.9.
File functions

You can save the files to any directory or "device", by giving the path to it. By default, EmACT works on the current directory. For certain commands requiring that you give a file name, EmACT can help you in your search (systems MS-DOS, Windows, Windows NT/W2K, OS/2 or UNIX). As soon as you type on the space bar or the tab character, EmACT lists all the file names that correspond to what you already typed. You move through the files sequentially with the space bar or the tab and select the name wanted with carriage return. In this mode, key ESC makes it possible to go up of a level of directory, Ctrl-C erases all the input and Ctrl-D inserts the contents of the current directory in a new edit buffer.

Example :

You type the Ctrl-XCtrl-I command for insertion of a file. The message " insert-file " appears. You type " fo " then on tabulation, EmACT proposes all the file names starting with fo (fou, foo.c, foo.ll...). If you type "/usr/lib/", EmACT proceeds in the same way by using the files of this directory.

Reads the file
(Ctrl-XCtrl-R)

Save the active file
(Ctrl-XCtrl-S)

Save the modified buffers with confirmation
(Ctrl-XS)

Load a new file
(Ctrl-XCtrl-F)

Save under a new name
(Ctrl-XCtrl-W)

Insert a file
(Ctrl-XCtrl-I)

Toggle the rights of writing to the file
(Ctrl-XCtrl-Q)

Replace the buffer by a new file
(Ctrl-XCtrl-V)

Mark the buffer as not modified
(ESC-~)

Reads a directory in mode " DIRED "
(C-xd)

Erase a file
(Unbound)

On the majority of the operating systems (MS-DOS, Windows, Windows NT/W2K, OS/2, UNIX), it is possible to list the contents of a directory. In this case, EmACT passes automatically into DIRED mode. In this mode, when one makes a carriage return when the cursor is on a name of directory or one presses on the key 'f', one recursively lists the contents of this directory or one opens the file itself when this name corresponds to a standard file. One obtains the same effect on the systems supporting the mouse while clicking on the line containing the name of the file or the directory. In DIRED mode, one can also remove a file by typing the ‘d’ (delete) key on the line containing the file to be destroyed; the letter D appears in margin of right-hand side indicating that the file is marked for " destroying ". To carry out the erasure of all the marked files, it is necessary to type on the key 'x' (execute).

4.10.
Commands for handling of buffers

When a file is opened, it is in fact copied into a buffer. Any modification in the text affects only the buffer, as long as this buffer is not backed up to the file.

Ctrl-XCtrlB lists all the existing buffers, their size, their mode of editing and the files to which they are connected; in this window, one can select the buffer to be saved by typing the letter 'f' on the line containing the name of the buffer or the file. As for DIRED mode, the commands 'k' and 'd’ marks the buffer for removal (letter ‘D’ in margin at left), the command 's’ saves it to disc (letter 'S’ in margin at left) and command '%' changes only the read-only attribute (letter '%' in margin at left). The command 'u' cancels all the marks for the current buffer. The command 'x' carries out the commands for all the buffers marked by the commands 'k', 'd’, ‘s' and '%'.

If the buffer’s name is known, Ctrl-XB makes it possible to select it directly by the command line mini-buffer. As for the selection of the files, one can type just the first letters of the name and use the space bar to see possible completions. If the buffer already exists, the current window visualizes its contents; if the buffer does not exist, it is created and its contents are visualized in the current window. Ctrl-XK destroys the buffer of which you give the name. If the buffer is displayed, it cannot be destroyed. The following message appears:

« Buffer is being displayed »

If the buffer underwent unsaved modifications, EmACT asks whether these modifications should be lost.

The EmACT command, by itself, creates a buffer named "*scratch*", not connected to a file. The command " EmACT foo bar " creates two buffers foo and bar, connected to the files of same names if they exist. Two windows appear visualizing these two files. If one calls EmACT with more than two files, they all are loaded in memory and first is displayed in the low part of the screen while the high part displays the list of the charged buffers, i.e. the list of the files on the command line. One can also call EmACT with, as first argument, an argument which corresponds to the number of the line to which one wishes to go in the file passed in second argument. Thus, EmACT 112 foo.c will open the file foo.c and will position line 112 of this file. This functionality is very useful when it is used in conjugation with compilers for the finding and the correction of the errors.

Change active buffer
(Ctrl-XB)

Delete the buffer
(Ctrl-XK)

Show the list of buffers
(Ctrl-XCtrl-B)

4.11.
Functions on windows

EmACT is a multi-windowing editor, a window displaying a portion of buffer. EmACT thus makes it possible to see and edit, at the same time, several files, or various parts of the same file. Commands make it possible to create, close, change the size... of a window. Others make it possible to pass from a window to another, which facilitates the displacement of blocks of text from one window to another, therefore from file to file. Any time, EmACT can provide a help concerning the commands. ESC-? opens a help window giving causes a short description of the available commands.

Decrease the current window
(Ctrl-XCtrl-Z)

Delete the current window
(Ctrl-X0)

Delete the other windows
(Ctrl-X1)

Split in two the current window
(Ctrl-X2)

Delete the current window
(Ctrl-XD)

Go to the following window
(Ctrl-XN)

Go to the following window
(Ctrl-XO)

Go to the preceding window
(Ctrl-XP)

Go to the top window
(Ctrl-XT)

Increase the current window
(Ctrl-XZ)

Adjust the screen to 80 columns (graphic environment)
(Ctrl-X8)

Open a help window
(ESC -?)

4.12.
Editing modes

EmACT has several editing modes (FUNDAMENTAL, C, C++, JAVA, LISP, PROLOG, ASSEMBLY, DIRED), each one being adapted to a particular mode of editing. The modes LISP, C and C++ check, for example, the balancing of parentheses in expressions and indenting the following line according to the rules suitable for the language.

Mode DIRED allows navigation (browse mode) through the directories if the system authorizes it (MS-DOS, Windows 3.x, Windows NT, Windows 95, OS/2, UNIX).
Enter mode Assembly
(ESC-Ctrl-A)

Enter mode C
(ESC-Ctrl-C)

Enter mode C++
(ESC-+)

Search for a definition
(ESC-Ctrl-F)

Enter mode Lisp
(ESC-Ctrl-L)

Enter mode Java
(ESC-Ctrl-J)

Enter normal mode
(ESC-Ctrl-N)

Enter mode Prolog
(ESC-Ctrl-P)

Move cursor to preceding left angle bracket
(ESC-[)

Move cursor to following right angle bracket
(ESC-])

Move cursor to preceding left curly bracket
(ESC-{)

Move cursor to following right curly bracket
(ESC-})

Move cursor to preceding left parenthesis
(ESC-()

Move cursor to following right parenthesis
(ESC-))

Indent the current line
(Ctrl-I)

Indent a new line
(Ctrl-J)

4.13.
Automated search

EmACT has two kinds of search: simple search ahead or behind from to the current position of the cursor, and search on all the text, with replacement of text. In this last case, EmACT requires the text to be replaced, then the text to replace with. With ESC-%, the cursor is placed at each occurrence of the text to replace, and awaits confirmation of the replacement by the message "Query-Replace mode". You must answer "y" to confirm, another key to pass to the following occurrence, or "!" to replace all without asking confirmation. Pay attention to the command ESC-& which replaces the text without ever requiring confirmation.
Search in reverse direction
(Ctrl-R) or (ESC-r)

Search ahead
(Ctrl-S) or (ESC-s)

Search and replaces with confirmation
(ESC-%)

Search and replace on all text without confirmation
(ESC-&)

Complete the current word in the text
(ESC /) or (Ctrl-])

4.14.
Dynamic expansion of text

It is frequent to have to type several times the same name (name of function, variable, method...). To avoid having to remember the name of a symbol or to minimize the risks of errors at the time of the data entry, EmACT allows dynamic expansion of the current name. Search begins by exploring the edit buffer starting from the place where this command was typed and going up to the top of the buffer in order to find a name starting with the beginning of the word already typed. When a word corresponds, it is used to complete the beginning of the current word and the editing can continue at the end of this word once expanded. If it is not appropriate, one types ESC-/ again and the word suggested is put in a list of rejected words. Search continues while trying to find a new word. When the beginning of the file is reached and no correspondence was found, search starts from the active word while going this time to the bottom of the buffer. Lastly, if no word were still found and a file of tags (see this heading) is present in the directory to which the file belongs, the contents of the file of tags are used to carry out new attempts The comparison is done according to the value of the variable isearch-toggle-case-fold.

Complete the current word in the text
(ESC-/) or (Ctrl-]).

4.15.
Functions on text regions

An area is the portion of text delimited between an invisible "mark" and the current position of the cursor. Each edit window can have its own defined area. The command Ctrl-space or Ctrl-@ inserts this invisible mark into the position of the cursor. By moving from this one, you define an area between the mark set and the current position of the cursor. To move text or to copy a part of a file, one starts by setting a mark at an end of the area to be copied or move, then one moves the cursor at the other end of this text. One erases, using Ctrl-W, or one copies, using ESC-w, the area of text that is then put in the delete buffer. This one can then be copied several times, and at any place, by using the command Ctrl-Y.
Position the mark
(Ctrl-@) or (C-space)

Mark all the active buffer
(Ctrl-Xh)

Make an area lowercase letters
(Ctrl-XCtrl-L)

Make an area uppercase letters
(Ctrl-XCtrl-U)

Copy an area to the delete buffer (kill buffer)
(ESC-w)

Copy an area to a file
(Ctrl-Xw)

Delete an area
(Ctrl-W)

Indent an area of a tabulation towards the right
(Ctrl-X >)

Indent an area of a tabulation towards the left
(Ctrl-X<)

Un-indent an area
(ESC-Ctrl-\)

4.16.
Functions on paragraphs

A paragraph is the portion of text delimited between two end marks of paragraph. In mode " text ", the delimiter of paragraph is a blank line. One can change this delimiter by setting the value of the variable fill-prefix or by carrying out the command set-fill-prefix Ctrl-X. (Control-X’.’) which takes as prefix the text ranging between the beginning of the line and the current position of the cursor. In this case, a paragraph is the whole of the lines containing the fill-prefix at the beginning of line. The variable fill-column indicates the maximum column of display allowed for a paragraph. One can position the value of this variable by means of the command set-fill-column, Ctrl-XF, that uses the position of the cursor as the new value. When the auto-fill-mode mode is positioned with T, the typed text is automatically adjusted with the following line as soon as the space character is met and the current position is higher than the value of fill-column. The cursor is positioned on a new line, which is possibly supplemented by the value of the fill-prefix. By default, the justification is done on the left-hand column. For a total justification, it is necessary to carry out the command set-justification-full which will insert additional spaces in order to fill the line up to the value of the variable fill-column.

Move to the beginning of paragraph
(M-{)

Move to the end of the paragraph
(M - })

Position the column of the fill-mode
(Ctrl-XF)

Set the text of the fill-mode
(Ctrl-X.)

Fills out the active paragraph on the left
(M-q)

Justify the active paragraph
(M-set-justification-left)

Justify the active paragraph
(M-set-justification-full)

4.17.
Functions on tags

The tags are marks calculated in advance which quickly make it possible to find the definition of a function in the whole set of the files composing a project. These marks are gathered in a file, which, by default, is called TAGS. The creation (or modification) of this file is carried out by means of the external command emtags which accompanies the EmACT editor. This command accepts a whole set of source files (C, C++ or Lisp) and gathers the whole of the definitions in a directly exploitable form for the editor. Then, if one quickly wishes to find the definition of a function, one carries out the command find-tag of EmACT which requires the name of the desired definition then opens the corresponding file while positioning directly on the line containing the definition. It is advisable to regularly update the file TAGS, which quickly becomes obsolete as the lines of code are modified.

Seek the definition of a function
(ESC-.)

Continue searching starting from the last tag found
(ESC-,)

4.18.
Macros

When you have a whole set of commands to carry out several times, you can define a macro-command which could be used thereafter as often as you wish to. However, you can memorize only one macro command at the same time. Ctrl-X(EmACT memorizes the commands which follow. " Remembering.." is displayed with the screen. Ctrl-X) EmACT finishes memorizing. " Keyboard macro defined. " is displayed with the screen. Thus, all the commands typed between Ctrl-X(and Ctrl-X) are recorded and define a macro-command. Ctrl-XE Carries out the last memorized macro. Macro definition is in memory as long as another macro is not created.

Examples :

Ctrl-X(

Ctrl-S

foo <CR>

Ctrl-R

ESC-U

Ctrl-X)

The macro thus defined searches starting from the current position of the cursor for the first occurrence of the word foo, and puts it in capital letters

Ctrl-U

10

Ctrl-XE

makes it possible to carry out this macro 10 times. In general, if the keyboard allows it, one can carry out the current macro by pushing the function key labeled F9.

Start macro definition
(Ctrl-X()

Finish macro definition
(Ctrl-X))

Execute macro
(Ctrl-XE) or F9

Undo macro – NOT YET IMPLEMENTED
(Ctrl-XU)

4.19.
Use of a counter

At the time of the definition of macro, it is often useful to be able to use an internal counter to display different numerical information with each execution. EmACT has for this purpose a counter that can be controlled by means of the commands of the type counter-XXX. The format of display uses the directives of formatting of the printf C language function. By default, the counter is displayed in a numerical way with the directive %d. The command counter-format makes it possible to change this value. For example, the directive 0x%04x will display the counter in the hexadecimal form, preceded by 0x, with 4 characters and, possibly, supplemented on the left by 0. If the current value of the counter is 132 (104 in hexadecimal), it will be displayed in the edit buffer in the form 0x0104. The formatting directive can also apply to display characters (directive %c). Initially, the counter is set to 0. One can initialize it (or reinitialize it) by means of the command counter-set Ctrl-X$S that uses the Ctrl-U prefix to set the new value.

Thus, to make start the counter with 100, it is necessary to carry out Ctrl-U 100 Ctrl-X$S Note that, without argument, the command counter-set initializes the counter with 1 (Ctrl-U = 1). The counter can be incremented by means of the command counter-incr and be decremented by the command counter-decr. By default, these commands use a step of 1. It is necessary to prefix with Ctrl-U followed by an argument to modify this value.

Insert the current value of the counter
(Ctrl-X$-$)

Increment the counter
(Ctrl-X$-+)

Decrement the counter
(Ctrl-X$--)

Change the current value of the counter
(Ctrl-X$-S)

Change the formatting directive
(Ctrl-X$-F)

4.20.
Functions acting on the host system

These functions make it possible to launch system commands, while preserving the environment of editing. With Ctrl-X!, the message ": system-command " appears. Type your command system. After its execution, a message appears on return to EmACT: " Strike any key to continue." Ctrl-C makes it possible to carry out several commands system. You must type "exit" to return under EmACT. With Ctrl-XCtrl-C, you exit EmACT definitively.

As developers often use EmACT to write programs, it is essential to be able to communicate with the development system from the editor. This interaction is done in two ways: either by using the Ctrl-X-Ctrl-M command which calls automatically the system command make (it is contained in the variable make-name and its value is 'make' in general or ‘nmake’ with Visual C++), or by using the command M-X-compile which requires, in the mini-buffer, the system command to be carried out. When the system is finished carrying out the command, EmACT displays a window that contains the result of compilation. If, during this process, the compiler detected errors, one can directly go in the file and to the line comprising the error by means of the command Ctrl-X-` (backquote character).

When developing, it is frequently wanted to seek a character string within the whole set of the source files. Under UNIX, this functionality is provided by the standard command grep. Under EmACT, one can recover the result of the search by grep in a window. For that, one will use the M-X-grep command that will require the arguments of the search to be in the mini-buffer. As for compilation, one can directly go in the file and on the line comprising the error by means of the command Ctrl-X-` (character backquote). The standard distribution contains its own grep, called emgrep, which can be used if the system does not have this command as standard (e.g.: MS-DOS, NT, Windows 95…).

EmACT does not have (not yet) global search or modification on regular expressions like those used under Unix. To fill this gap, EmACT can delegate this work to an external program compatible with the utilities sed or perl generally found on Unix systems. One can call these programs directly from EmACT by the command M-Xsed or M-Xperl that await, as an argument, the type of action to be carried out. If the command is valid, the contents of the current buffer are modified according to the last options. For sed, this one can be a simple command or a whole set of commands put in a separate file and specified with the option ‘–f’ Thus, the command s/^char/BYTE/g replaces all the occurrences of char at the beginning of line by BYTE. The command ‘-f sedfile’ applies all the instructions of the file sedfile to the current buffer. For more detail on the commands of sed, consult the documentation of this utility. The standard distribution contains its own utility sed, called emsed, which can be used if the system does not have this command as standard (e.g.: MS-DOS, NT, Windows 95…).

Return temporarily to the Shell
(Ctrl-C)

Compile the file (mode C)
(Ctrl-XC)

Exit EmACT
(Ctrl-XCtrl-C)

Execute a system command
(Ctrl-X%)

Execute the current Makefile
(Ctrl-X-Ctrl-M)

Capture the result of an external command
(Ctrl-X!)

Launch a compilation from the editor
(M-X-compiles)

Delete a file
(M-unlink-file)

Change a character string in a whole set of files
(M-X-grep)

Effect complex modifications with the utility sed
(M-X-sed)

Effect complex modifications with utility Perl
(M-X-Perl)

4.21.
Miscellaneous commands and functions

When EmACT meets the form ****/**/** on the second line of a file, it supposes that it is a date format and updates it automatically with each backup of the disk file in form YYYY/mm/dd. This functionality updates it but can be turned off by setting the variable date-completion to nil.
Stop the pending command
(Ctrl-G)

Redisplay the screen
(Ctrl-L)

Repeat the following command N times
(Ctrl-U)

Display the current position
(Ctrl-X =)

Repeat the last command
(Ctrl-XESC)

Evaluate the buffer (Le-Lisp/OpenLisp version only)
(Ctrl-XCtrl-E)

Compare two windows starting from the current position
(Ctrl-^)

Compare two windows from the beginning
(M-Ctrl-D)

Insert UNICODE character from decimal code
(M-Ctrl-U)

Certain little used commands are not associated with a combination of keys. To call them, it is necessary to use ESC-x followed by the name of the command.
Display the current version of EmACT
(M-X-emacs-version)

Print the contents of the current buffer
(M-X-print-buffer)

Reload the current buffer from the disc
(M-X-revert-buffer)

Force UTF-8 encoding for the current buffer
(M-X-utf8-encoding)

Force UTF-16 encoding for the current buffer
(M-X-utf16-encoding)

Force System (default) encoding for the current buffer
(M-X-system-encoding)

Exchange the entire buffer in characters OEM
(M-X-ansi-to-oem)

Exchange the entire buffer in characters OEM
(M-X-ansi-to-oem)

Exchange the entire buffer in characters ANSI
(M-X-oem-to-ansi)

Exchange the entire buffer (Mac) in characters OEM
(M-X-mac-to-oem)

Exchange the entire buffer (Mac) in characters ANSI
(M-X-mac-to-ansi)

4.22.
Editor variables

A whole range of variables that can be modified in a dynamic way to change EmACT’s global behavior control the operation of the EmACT editor. One can, for example, make the search for a character string insensitive to the case (upper/lower) of the characters that make it up. For that, it is necessary to invoke the Ctrl-XR command which modifies a parameter of EmACT, then to type the name (or the beginning of name) of the parameter to be modified.

Example :

Ctrl-XR

: global-rebind case-<SPACE>

EmACT responds immediately

: global-rebind case-fold-search ?

Type <CR> to validate.

The variables of EmACT are as follows (with their default value and their type):

append-process-buffer
(nil)
FLAG

assembler-arguments
("")
STRING

assembler-name
("as")
STRING

auto-encoding-mode
(t)
FLAG

auto-fill-mode
(nil)
FLAG

background-color
(??)
INTEGER

backup-before-writing
(t)
FLAG

binary-mode
(nil)
FLAG

black-on-white
(t)
FLAG

compile-in-buffer
(t)
FLAG

compiler-arguments
("-c")
STRING

compiler-name
("cc")
STRING

confirm-unsaved-buffer
(nil)
FLAG

date-completion
(t)
FLAG

display-43-lines
(t)
FLAG

display-command
(nil)
FLAG

fast-redisplay
(t)
FLAG

fill-column
(70)
INTEGER

fill-prefix
("")
STRING

foreground-color
(??)
INTEGER

gnu-compatible
(t)
FLAG

help-file1
(??)
STRING

help-file2
(??)
STRING

help-file3
(??)
STRING

help-file4
(??)
STRING

isearch-toggle-case-fold
(t)
FLAG

java-compiler-name
("javac")
STRING

java-compiler-arguments
("")
STRING

java-executable-name
("java")
STRING

java-executable-arguments
("")
STRING

latex-mode
(nil)
FLAG

line-number-mode
(t)
FLAG

make-argument
("Makefile")
STRING

make-name
("make")
STRING

monochrome-monitor
(nil)
FLAG

mouse-flag
(??)
FLAG

pipe-process
(??)
FLAG

replace-mode
(nil)
FLAG

search-buffer
("")
STRING

set-show-graphic
(nil)
FLAG

tabulation-display
(7)
INTEGER

tabulation-size
(8)
INTEGER

5.
WRITING MACROS

EmACT has an extension language, related to the Lisp language, which makes it possible to write new commands. The directory /usr/lib/emacs contains some examples of files of macros for the languages C, C++, Java, Lisp and Prolog. Although close to Lisp in its syntax, this language is not a true Lisp interpreter (an experimental version of EmACT uses the OpenLisp language of the same author and offers all the possibilities offered by complete a Lisp interpreter). It does not have any data structure other than the symbol and is only used to automate certain sequences of commands. The file emacs.lsp, present in this directory, is loaded with each invocation with EmACT. It contains some useful macros as well as the value of the parameters related to the system. For example it contains the name and the options of the C compiler, the indicator of UPPERCASE/lowercase at the time of the search for a character string, the auto-saving of a BAK, and other parameters configurable by the user. One can, if wished, have several configuration files adapted to particular needs. To achieve this, it is enough to copy the executable emacs under another name and to create a .lsp file having the same name. Thus, the executable named emax will load the configuration file emax.lsp. The primitives usable inside the macros bear the name of the EmACT primitives shown in the help window (ESC-?) and given in APPENDIX. Thus (beginning-of-line) goes to the beginning of line and (delete-forward) erases the character under the cursor. Command C-Xuncompile-macro translates the current macro to Lisp source code and thus facilitates the modification of existing macros or the writing of new macros.

The definition of a new macro is done in a ‘.lsp’ file by using special form DEFUN for each new definition. Then it is related to a combination of keys using BIND-TO-KEY located in the form PROGN that is at the end of the definition file. By convention, the prefix Control-C is reserved for the user extension, but any other free combination can be used. The general structure of a macro file is thus as follows:

(defun macro-1 ()

EmACT-primitive

:

EmACT-primitive

)

(defun macro-N ()

EmACT-primitive

:

EmACT-primitive

)

(progn

 (bind-to-key ’macro-1
KEY1)

 (bind-to-key ’macro-N
KEYN))
;; Example: The following functions add or remove

;; a comment in current the Lisp file.

(defun comment-current-line ()

(beginning-of-line)

(insert-string ";")

(next-line))
(defun uncomment-current-line ()

(beginning-of-line)

(delete-forward)

(next-line))
(progn

 (bind-to-key ’comment-current-line "C-CC")

 (bind-to-key ’uncomment-current-line "C-CD"))

Apart from the commands of EmACT, the extension language comprises certain special forms like DEFUN, PROGN or BIND-TO-KEY with the special meanings described below:

(BIND-TO-KEY <function> <key>)
[Special Form with 2 arguments]

Associates with the key, or the combination of keys, <key>, the action associated with the function <function> itself defined using the form defun. Prefix C-C (Control-C) is in general used for the macros of modes specific to programming languages such as, for example, the Lisp, C, or C++ modes.

(DEFUN <name> () <body>)
[Special Form with N arguments]

Creates a definition of function comprising a sequence of one or more primitives or macros of EmACT.

(FIND-NEXT-PATTERN)
[Special Form without argument]

Search following occurrence of the character string corresponding to current search.

(INSERT-BUFFER-NAME)
[Special Form without argument]

The name of the edit buffer Inserts into the current position.

(INSERT-BASE-NAME)
[Special Form without argument]

The name of the edit buffer Inserts (without its extension) into the current position.

(INSERT-STRING <string>)
[Special Form with 1 argument]

The < string > inserts into the current position of the edit buffer.

(LOAD-MACRO <filename>)
[Special Form with 1 argument]

Load the file the macro one of name <filename> located in the directory / usr/lib/emacs.

(PROGN <body>)
[Special Form with N arguments]

This form must be the last expression evaluated in a file of macros. It typically contains the modifications of the variables system and the assignment of the functions to their access key by means of BIND-TO-KEY.

(REPEAT <n> <command>)
[Special Form with 2 arguments]

Repeats an EmACT command <n> times. E.g.: (repeat 4 (next-line))

(SETQ <symbol> <value>)
[Special Form with 2 arguments]

This command modifies the value of the preset symbol <symbol> by setting the value to <value>. Caution: SETQ does not make it possible to define a new variable.

(UPDATE-screen)
[Special Form without argument]

This command refreshes the screen while taking account of the preceding modifications.

(READ-FIRST-ARGUMENT <prompt>)
[Special Form with 1 argument]

(READ-SECOND-ARGUMENT <prompt>)
[Special Form with 1 argument]

(READ-THIRD-ARGUMENT <prompt>)
[Special Form with 1 argument]

Respectively these read the internal arguments named arg1, arg2, and arg3. These preset arguments make it possible to pass values to the macros by questioning the user by means of the character string <prompt> displayed in the last line of the screen.

E.g.:

(read-first-argument "Enter your name ")

(insert-string "User name ")

(insert-string arg1)

(next-line)
(WRITE-MINIBUFFER <string>)
[Special Form with 1 argument]

Displays the text <string>, in the last line of the editor, called the mini-buffer. This form is used to send messages to the user.

6.
Appendix – the primitives of EmACT

adjust-to-80-columns
(C-X8)

ansi-to-oem
(unbound)

append-next-kill
(M-C-W)

apropos
(M-?)

assemble-file
(C-XA)

assembler-mode
(M-C-A)

backward-char
(C-B)

backward-kill-word
(M-DEL)

backward-kill-word
(M-C-H)

backward-search
(C-R)

backward-search
(M-R)

backward-word
(M-B)

beginning-of-buffer
(M-<)

beginning-of-expression
(M-C-B)

beginning-of-line
(C-A)

capitalize-word
(M-C)

ccompile
(C-XC)

cd
(C-XC-D)

c-mode
(M-C-C)

compare-windows
(unbound)

compile
(unbound)

counter-decr
(C-X$--)

counter-incr
(C-X$-+)

counter-insert
(C-X$-$)

counter-format
(C-X$-F)

counter-set
(C-X$-S)

cpp-mode
(M-+)

dabbrev-expand
(M-/) or (Ctrl-])

delete-backward-char
(C-H)

delete-blank-lines
(C-XC-O)

delete-char
(C-D)

delete-file
(unbound)

delete-forward
(M-D)

delete-other-windows
(C-X1)

delete-previous-character
(DEL)

delete-window
(C-XD)

delete-windows
(C-X0)

diff-windows
(M-C-D)

dired
(C-X-D)

downcase-region
(C-XC-L)

downcase-word
(M-L)

end-of-buffer
(M->)

end-of-expression
(M-C-E)

end-of-line
(C-E)

enlarge-window
(C-XZ)

eval-buffer
(C-XC-E)

eval-expression
(M-M-CH)

eval-function
(M-X)

exchange-point-and-mark
(C-XC-X)

execute-keyboard-macro
(C-XE)

execute-makefile
(C-XC-M)

execute-monitor-command
(C-X%)

exit-emacs
(C-XC-C)

find-alternate-file
(C-XC-V)

find-file
(C-XC-F)

find-file-read-only
(C-XC-R)

forward-character
(C-F)

forward-search
(C-S)

forward-search
(M-S)

forward-word
(M-F)

get-command-in-buffer
(C-X!)

get-definition
(M-C-F)

global-rebind
(C-XR)

goto-line
(M-G)

goto-line
(M-N)

grep
(unbound)

help
(unbound)

illegal-operation
(C-G)

indent-for-tab-command
(C-I)

indent-region
(M-C-\)

indent-rigidily
(C-XC-I)

insert-file
(C-XI)

just-one-space
(M-SPACE)

kill-buffer
(C-XK)

kill-emacs
(C-XH)

kill-line
(C-K)

kill-region
(C-W)

kill-ring-save
(M-W)

lisp-mode
(M-C-L)

list-buffers
(C-XC-B)

mac-to-ansi
(unbound)

man
(unbound)

mark-whole-buffer
(C-XH)

match-left-bracket
(M-[)

match-left-curly-bracket
(M-{)

match-left-parenthesis
(M-()

match-right-bracket
(M-])

match-right-curly-bracket
(M-})

match-right-parenthesis
(M-))

newline
(C-M)

newline-and-indent
(C-J)

next-error
(C-X`)

next-error
(M-E)

next-line
(C-N)

next-window
(C-XN)

oem-to-ansi
(unbound)

open-line
(C-O)

other-window
(C-XO)

perl
(unbound)

previous-line
(C-P)

previous-window
(C-XP)

print-buffer
(unbound)

prolog-mode
(M-C-P)

prompt-for-macro-file
(M-C-M)

query-replace
(M-%)

quote-character
(M-Q)

quoted-insert
(C-Q)

recenter
(C-L)

repeat-last-command
(C-XM-ESC)

replace-string
(M-&)

reposition
(M-!)

return-to-fundamental-mode
(M-C-N)

revert-buffer
(unbound)

save-buffer
(C-XC-S)

save-some-buffers
(C-XS)

scroll-down
(M-V)

scroll-one-line-down
(C-XC-N)

scroll-one-line-up
(C-XC-P)

scroll-other-window
(M-C-V)

scroll-up
(C-V)

sed
(unbound)

set-mark-command
(C-@)

set-mark-command
(C-X-.)

sgml-mode
(unbound)

shift-region-left
(C-X<)

shift-region-right
(C-X>)

shrink-window
(C-XC-Z)

split-window-vertically
(C-X2)

start-remembering
(C-X()

stop-remembering
(C-X))

suspend-emacs
(C-Z)

tags-loop-continue
(M-,)

toggle-insert
(M-I)

toggle-read-only
(C-XC-Q)

top-window
(C-XT)

transpose-chars
(C-T)

transpose-lines
(C-XC-T)

transpose-words
(M-T)

uncompile-macro
(unbound)

undo
(unimplemented)

unlink-file
(unbound)

upcase-region
(C-XC-U)

upcase-word
(M-U)

use-buffers
(C-XB)

not-modified
(M-~)

what-cursor-position
(C-X=)

write-file
(C-XC-W)

write-region
(C-XW)

yank
(C-Y)

Copyright © 1985-2012

C. Jullien

_1302700837.doc

Find file: /usr/lib/emacs/emacs.lsp	/usr/lib/emacs/emacs.lsp/uu//////usr/lib/emacs/emacs.lsp

EmACT: v2.54 (Lisp) *scratch* - L1 (100%)

EmACT: v2.54 (Lisp) *scratch* - L1 (100%)

